Abstract:
본 발명은 원료물질로서 불용성 리튬화합물과 불용성 금속화합물을 산용액에 용해하여 혼합용액을 준비하고; 상기 혼합용액의 용매를 제거하여 균질한 건조체를 형성하고; 상기 건조체를 500 ~ 1500 o C의 범위의 온도에서 열처리하는 단계를 포함하여 구성되는 리튬이차전지 양극 활성 물질용 리튬금속산화물 제조방법 및 이에 따라 제조되는 리튬금속산화물, 이를 이용한 리튬이차전지를 제공한다.
Abstract:
PURPOSE: A positive electrode thin film for an all solid lithium thin film battery, its preparation method and an all solid lithium thin film battery containing the positive electrode thin film are provided, to improve electrochemical properties without heating process. CONSTITUTION: The positive electrode thin film is prepared by vapor depositing a positive electrode active material at a room temperature with impressing a negative bias voltage of 0 V to -70 V (except 0 V) by using a radio-frequency power supply device to a substrate, to form a crystallized positive electrode thin film on the substrate. Preferably the substrate is a silicon substrate, glass, a polymer or a metal substrate with a low melting point; and the positive electrode active material is a composite oxide of lithium and a transition metal. Preferably the positive electrode thin film has an initial discharge capacity of 63 μAh/cm2·μ m and a discharge capacity of 30 μAh/cm2·μm at about 65-300 cycle, and has a microcrystalline structure having a thickness of 200-500 nm and a size of 5-30 nm.
Abstract:
PURPOSE: A coin-type lithium polymer battery is provided, to improve the capacity, the cycle lifetime characteristic and the stability of the battery and to allow the battery to be manufactured easily. CONSTITUTION: The coin-type lithium polymer battery comprises a laminate formed by laminating a negative electrode(21) whose both sides are adhered to a polymer electrolyte(23) and positive electrode(22) whose both sides are adhered to a polymer electrolyte(23), separately or together. The polymer electrolyte(23) is a gel-type polymer electrolyte containing an organic solvent electrolyte or a porous polymer membrane containing an organic solvent electrolyte. Preferably the gel-type polymer electrolyte is at least one selected from the group consisting of a polyacrylonitrile-based polymer, a polyvinylidene fluoride-based polymer, a polymethyl methacrylate-based polymer, a polyethylene oxide-based polymer, a polyethylene glycol-based polymer, a polyethylene glycol diacrylate-based polymer, a polyethylene glycol dimethacrylate-based polymer and a polyethylene glycol trimethacrylate-based polymer; and the porous polymer membrane is at least one selected from the group consisting of a polyvinylidene fluoride-based porous polymer, a polyvinylidene chloride-based porous polymer and a polyacrylonitrile-based porous polymer.
Abstract:
PURPOSE: A surface treatment method of forming a porous oxide coating film having superior biocompatibility with bone, chemical and physical stabilities, uniformed pore distribution, expanded pore size and smooth surface characteristics on the surface of implants comprising metallic titanium or titanium alloys is provided. CONSTITUTION: The electrochemical surface treatment method of implants comprising metallic titanium or titanium alloys comprises the processes of pre-treating the surface of implants comprising metallic titanium or titanium alloys; forming an oxide coating film on the surface of the implants by electrochemically oxidizing the pre-treated implants; and post-treating the formed oxide coating film with an acid or alkaline aqueous solution to obtain uniformed pore distribution, wherein the pre-treatment process comprises the steps of degreasing the implants using acetone or alcohol; water washing the implants taken out of the aqueous solution by taking the implants out of the aqueous solution after dipping the degreased implants into a NaOH aqueous solution or KOH aqueous solution having a concentration of 30 g/liter at 80 deg.C for 5 minutes, pickling the water washed implants in a solution comprising 15 mL of concentrate nitric acid having a concentration of 61 wt.%, 3 mL of hydrofluoric acid having a concentration of 49 wt.% and 82 mL of distilled water at an ordinary temperature for 5 minutes, and washing the implants with distilled water for 10 minutes.
Abstract:
PURPOSE: A lithium electrode, method for manufacturing the same and lithium battery using the same is provided to improve electrode capacity and lengthen useful life of the battery, while achieving improved charging/discharging characteristics. CONSTITUTION: A lithium electrode(100) comprises a lithium layer or a lithium alloy layer(101a) having a thickness of 10Å to 100μm, and which is formed on a battery current collector(103); and a porous metal layer or a porous carbon layer(102a) having a thickness of 1Å to 10μm, and which is formed on the lithium layer or the lithium alloy layer. The lithium alloy layer is made of an alloy formed of a lithium and a metal selected from a group consisting of Al, Sn, Bi, Si, Sb, B and alloy thereof. The porous metal layer is made of a metal selected from a group consisting of Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, lr, Al, Sn, Bi, Si, Sb and alloy thereof.
Abstract:
PURPOSE: A UV curing multi-layered polymer electrolyte and a lithium secondary battery containing the electrolyte are provided, to improve the adhesive strength, the mechanical properties, the low and high temperature characteristics, the high rate discharge capacity, the lifetime, the capacity and the stability of a battery. CONSTITUTION: The electrolyte comprises a separation membrane layer, a UV curing polymer layer and an organic electrolyte solution which is prepared by dissolving a lithium salt into an organic solvent. The separation membrane layer is made of a polymer electrolyte, polypropylene, polyethylene polyvinylidene fluoride or non-woven; the UV curing polymer layer comprises the polymer obtained by UV curing the ethylene glycol di(meth)acrylate oligomer represented by the formula CH2=CR1COO(CH2CH2O)nCOCR2=CH2(wherein R1 and R2 are independent each other and are H or methyl group and n is an integer of 3-20), and the polymer selected from the group consisting of a polyvinylidene fluoride-based polymer, a polyacrylonitrile-based polymer, a poly(methyl methacrylate)-based polymer, a poly(vinyl chloride)-based polymer and their mixtures. Preferably the lithium salt is selected from the group consisting of LiPF6, LiClO4, LiAsF6, LiBF4, LiCF3SO3, Li(CF3SO2)2N and their mixtures; and the organic solvent is selected from the group consisting of ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and their mixtures.
Abstract:
PURPOSE: A current collector coated with a metal, an electrode employing the current collector and a lithium battery containing the electrode are provided to improve the conductivity and to allow the potential distribution on the surface of an electrode to be maintained uniformly, thereby enhancing the utilization rate of an electrode and the cycle characteristic and the charge/discharge characteristic of a battery. CONSTITUTION: The current collector is a foil, a punched foil, an expanded foil or a porous plate made of copper, nickel, aluminum or titanium, and whose both faces are coated with a metal with a thickness of several nm to several micrometers uniformly. Preferably the metal coating the current collector is selected from the group consisting of Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi, Si, Sb and their alloys. The electrode comprises a lithium electrode made by coating the current collector with lithium; a carbon-coated carbon electrode; and a metal compound-coated metal compound electrode. The lithium battery comprises a cathode and an anode according to the electrode; a polypropylene or polyethylene separation membrane; and a polymer electrolyte or a solid electrolyte.
Abstract:
PURPOSE: A lithium primary battery comprising a lithium metal oxide or lithium metal composite positive electrode and a current collector negative electrode is provided, to improve the stability, the capacity of a battery and the energy density and to allow a battery to be made more easily. CONSTITUTION: The lithium primary battery comprises a positive electrode containing lithium metal oxide or lithium metal composite; a current collector negative electrode; and a separator. The current collector is a metal selected from the group consisting of Cu, Ni, Ti and Al, or the metal selected from the group consisting of Cu, Ni, Ti and Al which is coated with the metal selected from the group consisting of Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Li, Al, Sn, Bi, Sb and their alloy. Preferably the lithium metal oxide is selected from the group consisting of Li(1+x)CoO2, Li(1+x) NiCoO2, Li(1+x)Mn2O4, Li(1+x)MNO2, LIxVOy and LixRuOY; and the lithium metal composite is selected from the group consisting of LixCoPO4, LixFePO4 and LIxCaCoF6.
Abstract translation:目的:提供一种包含锂金属氧化物或锂金属复合正极和集电极负极的锂一次电池,以提高电池的稳定性,电池容量和能量密度,并且能够更容易地制造电池 。 构成:锂一次电池包含含锂金属氧化物或锂金属复合物的正极; 集电极负极; 和分隔符。 集电体是选自Cu,Ni,Ti和Al的金属,或选自Cu,Ni,Ti和Al的金属,其被选自Ni, Cu,Ti,V,Cr,Mn,Fe,Co,Zn,Mo,W,Ag,Au,Ru,Pt,Ir,Li,Al,Sn,Bi,Sb及其合金。 优选锂金属氧化物选自Li(1 + x)CoO 2,Li(1 + x)NiCoO 2,Li(1 + x)Mn 2 O 4,Li(1 + x)MNO 2,Li x V O y和Li x Ru O y; 锂金属复合物选自LixCoPO 4,LixFePO 4和Li x CaCoF 6。
Abstract:
PURPOSE: A hybrid-type super secondary battery which is manufactured by engaging a secondary lithium battery and a super capacitor is provided to improve the high rate pulse discharging characteristics, the low temperature characteristics, and the cycle life characteristics of a battery by engaging a secondary lithium battery and a super capacitor. CONSTITUTION: A hybrid type super secondary battery which is manufactured by engaging a secondary lithium battery and a super capacitor comprises a lithium ion battery, an insulating polymer layer, and a super capacitor. According to the hybrid type secondary battery, the high rate pulse discharging characteristics, the low temperature characteristics, and the cycle life characteristics of the battery are improved by engaging a secondary lithium battery and a super capacitor.