Abstract:
A process for fabricating a single-sided semiconductor deep trench structure filled with polysilicon trench fill material includes the following steps. Form a thin film, silicon nitride, barrier layer over the trench fill material. Deposit a thin film of an amorphous silicon masking layer over the barrier layer. Perform an angled implant into portions of the amorphous silicon masking layer which are not in the shadow of the deep trench. Strip the undoped portions of the amorphous silicon masking layer from the deep trench. Then strip the newly exposed portions of barrier layer exposing a part of the trench fill polysilicon surface and leaving the doped, remainder of the amorphous silicon masking layer exposed. Counterdope the exposed part of the trench fill material. Oxidize exposed portions of the polysilicon trench fill material, and then strip the remainder of the masking layer.
Abstract:
A process for fabricating a gate oxide of a vertical transistor. In a first step, a trench is formed in a substrate, the trench extending from a top surface of the substrate and having a trench bottom and a trench side wall. The trench side wall comprises a (100) crystal plane and a (110) crystal plane. Next, a sacrificial layer having a uniform thickness is formed on the trench side wall. Following formation of the sacrificial layer, nitrogen ions are implanted through the sacrificial layer such that the nitrogen ions are implanted into the (110) crystal plane of the trench side wall, but not into the (100) crystal plane of the trench side wall. The sacrificial layer is then removed and the trench side wall is oxidized to form the gate oxide.
Abstract:
An improved capacitor is formed by a process where an improved node dielectric layer is formed with an improved dielectric constant by performing an Free Radical Enhanced Rapid Thermal Oxidation (FRE RTO) step during formation of the node dielectric layer. Use of an FRE RTO step instead of the conventional furnace oxidation step produces a cleaner oxide with a higher dielectric constant and higher capacitance. Other specific embodiments of the invention include improved node dielectric layer by one or more additional nitridation steps, done by either Remote Plasma Nitridation (RPN), Rapid Thermal Nitridation (RTN), Decoupled Plasma Nitridation (DPN) or other nitridation method; selective oxidation; use of a metal layer rather than a SiN layer as the dielectric base; and selective oxidation of the metal layer.