Abstract:
In an orthogonal frequency division multiplexing (OFDM) system which uses an outer Reed-Solomon encoder and interleaver an inner convolutional encoder, after the inner convolutional encoding the data bits are interleaved, and then grouped into symbols, each symbol having "m" bits. After grouping, the symbols are mapped to a complex plane using quadrature amplitude modulation (QAM). Thus, bits, not symbols, are interleaved by the inner interleaver. A receiver performs a soft decision regarding the value of each bit in each complex QAM symbol received.
Abstract:
In an orthogonal frequency division multiplexing (OFDM) system which uses an outer Reed-Solomon encoder and interleaver an inner convolutional encoder, after the inner convolutional encoding the data bits are interleaved, and then grouped into symbols, each symbol having "m" bits. After grouping, the symbols are mapped to a complex plane using quadrature amplitude modulation (QAM). Thus, bits, not symbols, are interleaved by the inner interleaver. A receiver performs a soft decision regarding the value of each bit in each complex QAM symbol received.
Abstract:
In a concatenated code data, correctly decoded code words from a block decoder is utilized to improve the performance of the convolutional decoder. A code word can sometimes be correctly decoded prior to receipt of all the symbols for the code word. Early decoding of the code word allows for the correct recreation of the entire code word, even the symbols which have not yet been received. The entire corrected code word is used by the convolutional decoder to eliminate branches the trellis, thus improving decoding of prior data bits and future data bits in the trellis. The chain back distance of the convolutional decoder can also be made shorter based on the knowledge that some of the received code words have been correctly decoded. Finally, the parity symbols which have not yet been received for the correctly decoded code word can be eliminated from transmission to improve the overall transmission rate.
Abstract:
A system and method for adaptively sectorizing channel resources within a digital cellular communication system is disclosed herein. The system includes an antenna arrangement for providing at least first and second electromagnetic beams for receiving a first information signal transmitted by a specific one of a plurality of users, thereby generating first and second received signals. A first set of beam-forming signals are then generated from the first and second received signals. A demodulating receiver is provided for demodulating at least first and second beam-forming signals included within the first set of beam-forming signals, thereby producing first and second demodulated signals. The system further includes a tracking network for tracking multipath information signals, received from various positions and angles of incidence, based on comparison of the first and second demodulated signals.
Abstract:
A variable rate transmission system wherein a packet of variable rate data generated by a variable rate data source is modulated on traffic channel by traffic channel modulator if the capacity of the traffic channel is capable of transmitting the packet. And where the packet of variable rate data is modulated onto traffic channel by traffic channel modulator and at least one overflow channel by traffic channel modulator, if the capacity of the traffic channel is less than required to transmit the packet. A receiving system for receiving variable rate data transmitted in accordance with the above.
Abstract:
A system and method for adaptively sectorizing channel resources within a digital cellular communication system is disclosed herein. The system includes an antenna arrangement for providing at least first and second electromagnetic beams for receiving a first information signal transmitted by a specific one of a plurality of users, thereby generating first and second received signals. A first set of beam-forming signals are then generated from the first and second received signals. A demodulating receiver is provided for demodulating at least first and second beam-forming signals included within the first set of beam-forming signals, thereby producing first and second demodulated signals. The system further includes a tracking network for tracking multipath information signals, received from various positions and angles of incidence, based on comparison of the first and second demodulated signals.
Abstract:
In an orthogonal frequency division multiplexing (OFDM) system (10) which uses an outer Reed-Solomon encoder and interleaver (24) and an inner convolutional encoder (26), after the inner convolutional encoding the data bits are interleaved by an inner interleaver (28), and then grouped into symbols, each symbol having 'm' bits. After grouping, the symbols are mapped to a complex plane using quadrature amplitude modulation (QAM). Thus, bits, not symbols, are interleaved by the inner interleaver (28). A receiver (12) performs a soft decision regarding the value of each bit in each complex QAM symbol received.
Abstract:
A system involves a first SerDes link from a first integrated circuit (IC) to a second IC and a second link from the second IC to the first IC. Power consumption settings in circuitry of the first link are adjusted to control power consumption such that the bit error rate of the first link is maintained in a range, where the lower bound of the range is substantially greater than zero. Power consumption settings in circuitry for the second link are adjusted to control power consumption such that the bit error rate of the second link is maintained in range, where the lower bound of the range is substantially greater than zero. In one example, circuitry in the second IC detects errors in the first link and reports back via the second link. The first IC uses the reported information to determine a bit error rate for the first link.
Abstract:
In an orthogonal frequency division multiplexing (OFDM) system (10) which uses an outer Reed-Solomon encoder and interleaver (24) and an inner convolutional encoder (26), after the inner convolutional encoding the data bits are interleaved by an inner interleaver (28), and then grouped into symbols, each symbol having "m" bits. After grouping, the symbols are mapped to a complex plane using quadrature amplitude modulation (QAM). Thus, bits, not symbols, are interleaved by the inner interleaver (28). A receiver (12) performs a soft decision regarding the value of each bit in each complex QAM symbol received.