Abstract:
To provide an optical component of quartz glass for use in a projection lens system for immersion lithography with an operating wavelength below 250 nm, which is optimized for use with linearly polarized UV laser radiation and particularly with respect to compaction and birefringence induced by anisotropic density change, it is suggested according to the invention that the quartz glass should show the combination of several properties: particularly a glass structure essentially without oxygen defects, a mean content of hydroxyl groups of less than 60 wt ppm, a mean content of fluorine of less than 10 wt ppm, a mean content of chlorine of less than 1 wt ppm. A method for producing such an optical component comprises the following method steps: producing and drying an SiO2 soot body under reducing conditions and treating the dried soot body before or during vitrification with a reagent reacting with oxygen defects of the quartz glass structure.
Abstract:
An ideal quartz glass for a wafer jig for use in an environment having an etching effect is distinguished by both high purity and high resistance to dry etching. To indicate a quartz glass that substantially fulfills these requirements, it is suggested according to the invention that the quartz glass is doped with nitrogen at least in a near-surface area, has a mean content of metastable hydroxyl groups of less than 30 wt ppm and that its fictive temperature is below 1250° C. and its viscosity is at least 1013 dPa·s at a temperature of 1200° C. An economic method for producing such a quartz glass comprises the following method steps: melting an SiO2 raw material to obtain a quartz glass blank, the SiO2 raw material or the quartz glass blank being subjected to a dehydration measure, heating the SiO2 raw material or the quartz glass blank to a nitriding temperature in the range between 1050° C. and 1850° C. in an ammonia-containing atmosphere, a temperature treatment by means of which the quartz glass of the quartz glass blank is set to a fictive temperature of 1250° C. or less, and a surface treatment of the quartz glass blank with formation of the quartz glass jig.
Abstract:
To provide an optical component of quartz glass for use in a projection lens system for immersion lithography with an operating wavelength below 250 nm, which is optimized for use with linearly polarized UV laser radiation and particularly with respect to compaction and birefringence induced by anisotropic density change, it is suggested according to the invention that the quartz glass should show the combination of several properties: particularly a glass structure essentially without oxygen defects, a mean content of hydroxyl groups of less than 60 wt ppm, a mean content of fluorine of less than 10 wt ppm, a mean content of chlorine of less than 1 wt ppm. A method for producing such an optical component comprises the following method steps: producing and drying an SiO2 soot body under reducing conditions and treating the dried soot body before or during vitrification with a reagent reacting with oxygen defects of the quartz glass structure.
Abstract:
Applicants have discovered the existence of loss peaks in optical fiber transmission systems using wavelengths in the E-band and the L-band. Specifically, they have discovered the existence of narrow loss peaks at 1440 nm, 1583 nm and 1614 nm. Because the peaks are relatively narrow, they cannot be easily removed by conventional gain equalizers in long haul transmission systems, and although the peaks are relatively small, they can nonetheless cause transmission channels to drop out in amplified DWDM transmission systems. Applicants have further discovered that these loss peaks are due to carbon contamination of the transmission fiber. Thus optical fibers should be fabricated essentially free of carbon contamination. This means eliminating carbon-containing reagents in preform and tube-making processes.
Abstract:
A silica glass member of the present invention is one wherein when a composition thereof is expressed by SiOx, x is not less than 1.85 nor more than 1.95, wherein a concentration of hydrogen molecules included therein is not less than 1×1016 molecules/cm3 nor more than 5×1018 molecules/cm3, and wherein a difference A−B between an absorption coefficient A immediately before an end of irradiation with 1×104 pulses of ArF excimer laser light in an average one-pulse energy density of 2 mJ/cm2 and a second absorption coefficient B at 600 seconds after a stop of the irradiation with the ArF excimer laser light is not more than 0.002 cm−1. When this silica glass member is applied to an illumination optical system and/or a projection optical system in projection exposure apparatus, it becomes feasible to implement uniform exposure while reducing variation in illuminance on a reticle surface and in an exposure area on a wafer.
Abstract translation:本发明的石英玻璃构件是当其组成由SiO x表示时,x不小于1.85或不大于1.95,其中包含的氢分子的浓度不小于1×10 16分子/ cm <3>不超过5×10 18分子/ cm 3,并且其中在照射结束之前的吸收系数A与平均单脉冲中的1×10 4个ArF准分子激光脉冲之间的差AB 用ArF准分子激光照射停止600秒后的能量密度为2mJ / cm 2,第二吸收系数B为0.002cm -1以下。 当将该石英玻璃构件应用于投影曝光装置中的照明光学系统和/或投影光学系统时,可以实现均匀曝光,同时减小掩模版面和晶片上的曝光区域中的照度变化。
Abstract:
A process of manufacturing a silica glass article comprising the steps of: (1) irradiating a silica glass article with electromagnetic waves to generate defects therein; and (2) immersing the thus irradiated silica glass article in an atmosphere comprising a hydrogen gas, thereby providing the resulting silica glass article with a characteristic that is effective for preventing it substantially from increasing its absorption within an ultraviolet region due to ultraviolet ray irradiation. Also disclosed are a silica glass article or a glass fiber produced according to the manufacturing process.
Abstract:
A synthetic quartz glass for optical use, to be used by irradiation with light within a range of from the ultraviolet region to the vacuum ultraviolet region, which contains fluorine, which has a ratio of the scattering peak intensity of 2250 cmnull1 (I2250) to the scattering peak intensity of 800 cmnull1 (I800), i.e. I2250/I800, of at most 1null10null4 in the laser Raman spectrum, and which has an absorption coefficient of light of 245 nm of at most 2null10null3 cmnull1.
Abstract translation:一种用于光学用的合成石英玻璃,其用于通过在含有氟的紫外线区域至真空紫外线区域的范围内的光照射而使用,该散射峰强度比例为2250cm <上标> -1 >(I <下标> 2250 highlight>)到800 cm <上标> -1>(I <下标> 800 highlight>)的散射峰强度,即I <下标> 2250 highlight> / I 在激光拉曼光谱中,最多为1×10 <上标> -4>的<下标> 800 highlight>,其吸光系数为245nm,最多为2×10 <上标> -3> cm -1>。
Abstract:
A process of manufacturing a silica glass article comprising the steps of: (1) irradiating a silica glass article with electromagnetic waves to generate defects therein; and (2) immersing the thus irradiated silica glass article in an atmosphere comprising a hydrogen gas, thereby providing the resulting silica glass article with a characteristic that is effective for preventing it substantially from increasing its absorption within an ultraviolet region due to ultraviolet ray irradiation. Also disclosed are a silica glass article or a glass fiber produced according to the manufacturing process.
Abstract:
A synthetic silica glass having a high transmittance for vacuum ultraviolet rays, for example F2 excimer laser beam with a wavelength of 157 nm, a high uniformity and a high durability and useful for ultraviolet ray-transparent optical glass materials is produced from a high-purity silicon compound, for example silicon tetrachloride, by heat treating an accumulated porous silica material at a temperature not high enough to convert the porous silica material to a transparent silica glass in an inert gas atmosphere for a time sufficient to cause the OH groups to be condensed and removed from the glass, and exhibits substantially no content of impurities other than OH group a difference between highest and lowest fictional temperatures of 50° C. or less and a transmittance of 157 nm ultraviolet rays through a 10 mm optical path of 60% or more, and optically a OH group content of 1 to 70 ppm, a Cl content less than 1 ppm, a total content of impurity metals of 50 ppb or less, a content of each individual impurity metal less than 10 ppb, and an ultraviolet ray-transmittance at 172 to 200 nm of 40% or more even after the glass is exposed to an irradiation of ultraviolet rays at 160 to 300 nm for one hour.
Abstract:
The invention includes methods of making lithography photomask blanks. The invention also includes lithography photomask blanks and preforms for producing lithography photomask. The method of making a lithography photomask blank includes providing a soot deposition surface, producing SiO2 soot particles and projecting the SiO2 soot particles toward the soot deposition surface. The method includes successively depositing layers of the SiO2 soot particle on the deposition surface to form a coherent SiO2 porous glass preform body comprised of successive layers of the SiO2 soot particles and dehydrating the coherent SiO2 glass preform body to remove OH from the preform body. The SiO2 is exposed to and reacted with a fluorine containing compound and consolidated into a nonporous silicon oxyfluoride glass body with parallel layers of striae. The method further includes forming the consolidated silicon oxyfluoride glass body into a photomask blank having a planar surface with the orientation of the striae layer parallel to the photomask blank planar surface.