Abstract:
A multicomponent particulate gel includes 80-100 mole% SiO2, 1-10 mole% X2O, 1-10 mole% YO, 1-15 mole% Al2O3, and 0.1-5.0 weight% Er2O3,where X represents lithium, sodium, potassium, or mixtures thereof and Y represents calcium, barium, magnesium, lead or mixtures thereof, and the ratio of Al2O3 to(X2O+YO) is between about 0.9 and about 2.5. A process of manufacturing the gel includes hydrolyzing alkoxide derivatives of silicon, aluminum, erbium, lithium, sodium, potassium, calcium, barium, magnesium, lead or mixtures thereof in water to generate their respective hydroxide derivatives; polymerizing the hydroxide derivatives to produce a gel slurry comprising an essentially silica network; and drying the gel slurry to produce the gel.
Abstract translation:多组分颗粒凝胶包含80-100摩尔%的SiO 2,1-10摩尔%的X 2 O,1-10摩尔%的YO,1-15摩尔%的Al 2 O 3和0.1-5.0重量的Er 2 O 3,其中X代表锂,钠,钾, 或其混合物,Y表示钙,钡,镁,铅或其混合物,Al 2 O 3与(X 2 O + YO)的比例在约0.9至约2.5之间。 制造凝胶的方法包括在水中水解硅,铝,铒,锂,钠,钾,钙,钡,镁,铅或其混合物的醇盐衍生物以产生它们各自的氢氧化物衍生物; 聚合氢氧化物衍生物以产生包含基本上二氧化硅网络的凝胶淤浆; 并干燥凝胶浆以产生凝胶。
Abstract:
A first liquid (30) in a container (28) goes to a burner (14). Then a second liquid (34) in a second container (32) goes to the burner (14). The burner then makes soot which is deposited as silica (38) on a substrate (36).
Abstract:
Silica-based optical fiber comprising at least a core and a cladding surrounding the core, both core and cladding material produced by a vapor phase deposition process. The core and/or the cladding comprise at least two substituents, one chosen from Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, and the 4f-type rare earths (the ''modifiers''), and the other chosen from B, Al, Ga, In, P, As, and Sb (the ''homogenizers''). The maximum concentration of the substituents in the fiber is such that 3
Abstract:
Provided is lithium disilicate crystalline glass containing cristobalite crystal phase for high strength and aesthetic traits and its manufacturing process thereof. Exemplary embodiments of the present invention provide the high strength and aesthetic lithium disilicate crystalline glass, one kind of dental restoration materials, and its manufacturing method which induces the growth of the different crystal phase, cristobalite, from glass with lithium disilicate crystal.
Abstract:
Ultralow expansion titania-silica glass. The glass has high hydroxyl content and optionally include one or more dopants. Representative optional dopants include boron, alkali elements, alkaline earth elements or metals such as Nb, Ta, Al, Mn, Sn Cu and Sn. The glass is prepared by a process that includes steam consolidation to increase the hydroxyl content. The high hydroxyl content or combination of dopant(s) and high hydroxyl content lowers the fictive temperature of the glass to provide a glass having a very low coefficient of thermal expansion (CTE), low fictive temperature (Tf), and low expansivity slope.
Abstract:
An apparatus for manufacturing a glass perform, includes: a dummy tube section, a reservoir portion, and a cooling portion; and a glass tube section in which particles of an alkali metal compound or an alkaline earth metal compound which have flowed into the glass tube section from the dummy tube section are heated by a second heat source which performs traverse, and oxides of the particles being deposited on an inner wall and dispersed in the glass tube section. In the cooling portion of the dummy tube section, vapor of the alkali metal compound or the alkaline earth metal compound generated by heating of a first heat source is cooled and condensed by a dry gas flowing into the dummy tube section, and thereby the particles are generated.
Abstract:
Provided is lithium disilicate crystalline glass containing cristobalite crystal phase for high strength and aesthetic traits and its manufacturing process thereof. Exemplary embodiments of the present invention provide the high strength and aesthetic lithium disilicate crystalline glass, one kind of dental restoration materials, and its manufacturing method which induces the growth of the different crystal phase, cristobalite, from glass with lithium disilicate crystal.
Abstract:
The invention relates to a method allowing cost-effective production of doped quartz glass, particularly laser-active quartz glass, that is improved with regard to the homogeneity of the doping material distribution, in that a suspension is provided comprising SiO2 particles and an initial compound for at least one doping material in an aqueous fluid, the fluid being removed under formation of a doped intermediate product comprising particles of the doping material or particles of the precursor substance or the doping material, and the doped quartz glass is formed by sintering the doped intermediate product, wherein at least part of the particles of the doping material or the particles of the precursor substance of the same is generated in the suspension as a precipitate of a pH-value-controlled precipitation reaction of the initial compound.
Abstract:
A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
Abstract:
A preform for a low loss fiber optic cable and method and apparatus for fabricating such a preform is provided. The method includes providing AlCl3 and CVD precursors and locally doping CaCl3. Alkali and/or alkaline earth fluxing agents can be introduced. The alkali and/or alkaline earths are doped along with the aluminum into the silica glass core.