Abstract:
Electrically conductive, thermoplastic and heat-activatable adhesive sheet comprising i) a thermoplastic polymer in a proportion of at least 30% by weight, ii) one or more tackifying resins in a proportion of from 5 to 50% by weight and/or iii) epoxy resins with hardeners, with or without accelerators, in a proportion of from 5 to 40% by weight, iv) metallized particles in a proportion of from 0.1 to 40% by weight, v) non-deformable or virtually non-deformable spacer particles, in a proportion of from 1 to 10% by weight, which do not melt at the bonding temperature of the adhesive sheet.
Abstract:
The present invention provides a variety of interrelated methods of coating non-random and ordered arrays of particles, as well as films containing such arrays. The present invention also relates to the coated non-random and ordered arrays of particles and films prepared therefrom. The coated non-random and ordered arrays are obtained by the use of ferrofluid compositions which may be curable. The arrays and films may contain electrically-conductive particles useful in electronic applications for effecting contact between conductors.
Abstract:
A liquid crystal device and a manufacturing method thereof are described. The device comprises a liquid crystal panel and an auxiliary panel formed with an IC circuit for supplying driving signals to the liquid crystal device. The auxiliary substrate is separately provided with the circuit and the function thereof is tested in advance of the assembling with the liquid crystal panel. By this procedure, the yield is substantially improved.
Abstract:
An anisotropic conductive adhesive film capable of maintaining a high connection reliability on connection electrodes with a fine pitch on which an oxide film is formed. The anisotropic conductive adhesive film 1 comprises conductive particles 7 dispersed in an insulating binder 6. Each conductive particle 7 consists of a styrene resin particle 71 and a thin metal film 72 formed on the surface thereof by gold-plating, etc. Projections 72a are formed on the surface of the thin metal film 72 of the conductive particle 7.
Abstract:
An anisotropically electroconductive connecting material, which is disposed between a connection terminal on a first substrate and a connection terminal on a second substrate and joins the substrates together by thermocompression bonding while maintaining electroconductive connection therebetween, includes electroconductive particles dispersed in an insulating adhesive, wherein the modulus of elasticity of the electroconductive particles at the compression bonding temperature is 200% or less of the modulus of elasticity of the first substrate at the compression bonding temperature.
Abstract:
A method of forming an electrical connection from a drive circuit to an electrical device is provided. An electrical connection structure includes: electrodes formed on a device side, electrodes formed on a flexible film carrier having an electrode pattern connected to a drive circuit; and an anisotropic conductive film having metal particles or metal plated particles dispersed therein, interposed between the electrodes on the device side and the electrodes on the flexible film carrier, for electrically connecting the electrodes facing each other through thermocompression bonding. The electrodes, on the flexible film carrier are exposed by removing the flexible film at an electrical connection area, and the length of each exposed electrode is from 1.5 mm to 2.5 mm.
Abstract:
An anisotropic conductive adhesive composition comprising an insulating adhesive component and particles dispersed in said insulating adhesive component, said anisotropic conductive adhesive composition being characterized in thatsaid insulating adhesive component comprises a copolymer of acrylic ester having an alkyl group of 1-4 carbon atoms and a maleimide derivative,5 to 60 parts by weight, based on 100 parts by weight of the copolymer, of a thermosetting resin, and0.05 to 5.0 parts by weight, based on 100 parts by weight of the copolymer, of a coupling agent, andsaid particles are metallic-layer containing particles comprising a core made of resin, a metallic layer covering said core and a resin layer formed from finely divided resin fixed by the dry blending method on the surface of said metallic layer.
Abstract:
Electrical connection between electrode arrangements formed on first and second substrates is described. The first substrate is placed over the second substrate with a UV light curable adhesive between them. The UV light curable adhesive carries first and second particles dispersed therein. The first and second substrates are pressed against each other and exposed to UV light in order to harden the adhesive. The first particles are made from conductive particles and preferably resilient and function to form current paths between the electrodes of the first and second substrates. The second particles function to prevent the first particles from being destroyed by excess deformation.
Abstract:
A conductive connecting method for electrically connecting first and second electronic parts each having a plurality of connecting terminals arranged at a small pitch is disclosed. A conductive bonding agent is interposed between the plurality of connecting terminals of the first and second electronic parts. The conductive bonding agent is prepared by mixing a plurality of fine connecting particles in an insulating adhesive. Each fine connecting particle is designed such that a fine conductive particle or a fine insulating particle with a plating layer formed on its surface is covered with an insulating layer consisting of a material which is broken upon thermocompression bonding. When the conductive bonding agent is subjected to thermocompression bonding between the connecting terminals of the first and second electronic parts, portions of the fine connecting particles which are urged by the respective fine connecting terminals are broken. However, the insulating layers of the fine connecting particles in the planar direction are not broken and remain as they are. In this conductive connecting structure, even if the ratio of fine connecting particles is increased, and adjacent fine connecting particles are brought into contact with each other, insulating properties can be kept in the planar direction, while conduction is obtained only in the direction of thickness.
Abstract:
A composition comprising (A) an epoxy resin type adhesive, (B) particles obtained by coating a nucleus of a curing agent with a film, (C) pressure-deformable electroconductive particles having an average particles size larger than that of the particles (B), and if necessary (D) rigid particles having an average particle size smaller than that of the particles (B), is effective for connecting circuits electrically or connecting a semiconductor chip to a wiring substrate.