Abstract:
A method for the recovery of at least one of an organic acid or an organic acid amide, such as heat stable lactic acid or lactamide, from a feedstream (1) including mixing said feedstream that comprises the organic acid and/or organic acid amide with at least one azeotroping agent (2) in reactor (3). The azeotroping agent is a hydrocarbon capable of forming at least one heteroazeotrope with the organic acid or the organic acid amide. The mixture is heated to produce a vapor stream (11) and the vapor stream is further heated to separate components or it can be condensed in condenser (12) into a liquid stream. The liquid stream is capable of being separated into a first phase (18) and a second phase (17). The liquid stream can be further distilled or, alternatively, the two phases of the liquid stream can be separated. The first phase can be separated from the remainder of the liquid stream resulting in recovery of the organic acid and/or organic acid amide. The recovered organic acid and/or organic acid amide can be further purified and/or concentrated from the separated first phase.
Abstract:
Remarkably good surfactancy characteristics are exhibited by alkylene oxide (e.g., ethylene oxide, propylene oxide, etc.) adducts of relatively low degree of polymerization (D.P.), long chain glycoside compositions of the sort which are predominantly composed of long chain monoglycoside species and in which the types and relative proportions of any long chain polyglycoside species contained therein are such that the average degree of polymerization of such long chain glycoside constituents is less than 2.7. The subject low D.P. long chain glycoside alkylene oxide adducts exhibit surfactancy and/or detergency characteristics at least about as good as, and in some respects substantially better than, the corresponding alkylene oxide adducts of higher D.P. long chain glycoside materials.
Abstract:
A process is disclosed for producing an organic acid and optionally for simultaneously producing an ester of the organic acid. The process comprises the steps of: (a) combining an aqueous diluent, an ammonium salt of an organic acid, and an alcohol, thereby forming a homogeneous liquid feed mixture; (b) rapidly heating the feed mixture at a pressure sufficient to suppress at least some vaporization of the alcohol and holding it at a temperature and for a time sufficient to decompose the ammonium salt of the organic acid into ammonia and free organic acid while rapidly removing the ammonia from the reaction-mass transfer equipment, and optionally to react at least some of the free organic acid with the alcohol to form an ester of the organic acid, thereby producing (i) a vapor product stream that comprises ammonia, water, and alcohol, and (ii) a liquid product stream that comprises free organic acid, optionally ester, and alcohol, where of the total quantity of alcohol in the vapor product stream and the liquid product stream, at least about 10 % by weight is present in the liquid product stream; and (c) recovering the free organic acid and optionally the ester from the liquid product stream. The liquid feed mixture can comprise a concentrated crude or partially purified broth produced by a fermentation process.
Abstract:
A method of preparing reduced fat foods is provided which employs a retrograded, hydrolyzed, heat-treated, and fragmented, amylose starch. Amylose is precipitated and hydrolyzed with acid or α-amylase, solubles are removed by a heat treatment and the resulting solids are then fragmented to form an aqueous dispersion that is useful in replacing fat in a variety of food formulations. The amylose can be derived from a native starch which contains amylose, e.g. common corn starch and high amylose corn starch, by gelatinizing the starch followed by precipitation of the amylose.
Abstract:
Processes are disclosed for the purification and recovery of polysaccharide gums from an aqueous solution, particularly xanthan gum from a fermentation broth. An aqueous solution of at least one polysaccharide gum is mixed with a non-solvent stream comprising water and a subprecipitant level of a non-solvent of the polysaccharide gum. The mixture is concentrated to increase the polysaccharide gum concentration, and optionally undergoes a heat treatment. Additional non-solvent is added to the concentrated mixture to precipitate the polysaccharide gum. The precipitated gum is dried after being separated from the liquid component of the mixture. The removed liquid component can be recycled to the earlier step in the process in which the polysaccharide gum solution is mixed with the non-solvent stream.