Abstract:
A digital processor of a nebulizer controller controls and monitors drive current (I) applied to an aperture plate. The drive current is detected as a series of discrete values at each of multiple measuring points, each having a particular drive frequency The processor in real time calculates a slope or rate of change of drive current with frequency and additionally determines a minimum value for drive current leading up to the peak value. The processor uses both the value of the minimum drive current during the scan and also the maximum slope value to achieve reliable prediction of end of dose, when the aperture plate becomes dry.
Abstract:
An aerosol delivery system (1) has a nebulizer (2) and a humidifier (7) providing a gas flow to the nebulizer. A controller varies humidity level of the gas flow to the nebulizer (2) so that if the nebulizer is not operating it has about 100% humidity and it is operating the value is less to allow for the humidification effect of the nebulizer. The control may be achieved by dynamically varying proportions of flow through a dry branch (10, 11) and a humidification branch (8, 7).
Abstract:
A nebulizer has an aperture plate, a mounting, an actuator, and an aperture plate drive circuit (2- 4). A controller measures an electrical drive parameter at each of a plurality of measuring points, each measuring point having a drive frequency; and based on the values of the parameter at the measuring points makes a determination of optimum drive frequency and also an end-of-dose prediction. The controller performs a short scan at regular sub-second intervals at which drive current is measured at two measuring points with different drive frequencies. According to drive parameter measurements at these points the controller determines if a full scan sweeping across a larger number of measuring points should be performed. The full scan provides the optimum drive frequency for the device and also an end of dose indication.
Abstract:
A nebuliser 1 particularly for home use comprises a housing 2 having an aerosol generator 3 mounted therein. The housing is closed by a hinged cap 4 and has an outlet 5 through which aerosol generated by the generator 3 is delivered. A suitable connector such as a mouthpiece 6 may be connected to the outlet 5. The housing 2 has a receiver for receiving a nebule 8. The receiver comprises a slot 7 which is sized and/or shaped to accommodate only a nebule 8 of predetermined shape and/or size. The nebuliser cap 4 has a nebule opening means which may be in the form of a puncture pin 10 projecting therefrom to pierce the nebule 8 when the cap is moved to the closed position. The pin 10 is hollow or splined to regulate flow from the nebule. The nebuliser 1 also has a switch means for enabling operation of the aerosol generator 3 when the nebule 8 is opened. The switch means comprises a microswitch 12 on the housing which is engageable by a trigger 13 on the cap 4 when the cap is moved to the closed position. Aerosol generated by the aerosol generator 3 is delivered into a chamber defined by the nebuliser housing 2. Air passes into the chamber through air inlets 30. The air entrains the aerosolised medicament and the entrained aerosolised medicament is delivered from the nebuliser through the outlet 5.
Abstract:
A method for humidifying gas in a ventilator circuit 100, 101, 102, 105, 106 comprises aerosolising a humidifying agent such as water or saline using an aerosol generator 2 and delivering the aerosolised humidifying agent to the inspiration line 101 of the ventilator circuit coupled to the respiratory system of a patient. The aerosol generator 2 comprises a vibratable member 40 having a plurality of apertures extending between a first surface and a second surface. A controller 3 controls the operation of aerosol generator 2, for example in response to the flow of air in the inspiration line 101 as detected by a sensor 11.
Abstract:
A gas therapy system (1) has a flow line (3, 2), a coupler (6) to a gas source, and an aerosol generator (4) for aerosol delivery, and a patient interface such as a nasal interface (2). A controller (10) is configured to modulate gas flow and aerosol delivery in real time. The controller changes gas flow rate and dynamically reduces aerosol delivery during upper gas flow rates such as 60 LPM, and activates aerosol delivery during lower gas flow rates of for example 10 LPM. The control may also include sensors to detect breathing, so that there is a bias towards increased aerosol delivery during inhalation in addition to during lower level gas flow.
Abstract:
A nebulizer has an aperture plate, a mounting, an actuator, and an aperture plate drive circuit (2-4). A controller measures an electrical drive parameter at each of a plurality of measuring points, each measuring point having a drive frequency; and based on the values of the parameter at the measuring points makes a determination of optimum drive frequency and also an end-of-dose prediction. The controller performs a short scan at regular sub-second intervals at which drive current is measured at two measuring points with different drive frequencies. According to drive parameter measurements at these points the controller determines if a full scan sweeping across a larger number of measuring points should be performed. The full scan provides the optimum drive frequency for the device and also an end of dose indication.
Abstract:
An aerosol delivery system has an aerosol generator with a vibrating aperture plate (10) and an actuator (11, 16, 17, 19), a controller (18, 19). The controller in real time monitors (201) the aerosol generator as it is driven for vibration of the aperture plate, and detects (202) a change in an electrical characteristic in response to a transition from a wet state to a dry state of the aperture plate. It automatically modifies (203, 205, 206), during the transition, operation of the aerosol generator in response to the detected change. The modification includes reducing applied power (203). The controller continues (204) to monitor during the transition, including monitoring the aperture plate for presence of residual liquid on the aperture plate first surface. The controller monitors at a number of drive frequencies and maintains data representing trends in a combination of the electrical characteristic signals at the different frequencies, and identifies a start of a transition if a calculated value rises above a threshold. There is one threshold for triggering a check scan for residual volume and a higher threshold to trigger an immediate shut down.
Abstract:
A high flow nasal therapy system (1) has a gas supply (2), a nebulizer (12), and a nasal interface (7). There are two branches (11, 10) and a valve (6) linked with the controller, the branches including a first branch (11) for delivery of aerosol and a second branch (10) for delivery of non-aerosolized gas. The controller controls delivery into the branches (11, 10), in which flow is unidirectional in the first and second branches, from the gas supply towards the nasal interface. The first branch (11) includes the nebulizer (12) and a line configured to store a bolus of aerosol during flow through the second branch (10). The valve (6) comprises a Y-junction between the gas inlet on one side and the branches on the other side.
Abstract:
A supplemental oxygen delivery system is described in which Aerosol is delivered into a housing 10, 20, which sits in the circuit from the supplemental oxygen supply and optional humidifier. The supplemental oxygen passes through this chamber 10, 20 in which the aerosol is located, and collects the aerosol transporting it to a patient via a nasal cannula 3 or a face mask 4. An aerosol generator 9 is mounted to the housing 10, 20 and delivers aerosol into an oxygen stream 13 flowing between an inlet 14 and an outlet 15 of the housing 10. The housing 10 also has a removable plug 16 in the base 17 thereof for draining any liquid that accumulates in the housing 10. There is no disruption of oxygen delivery to patients using nasal cannulas who currently have to use a separate face-mask when receiving nebulized medication.