Abstract:
A process for fabrication of a sensor having a nano-gap electrode is provided to form the sensor with excellent sensitivity compared to common detective sensors and to ensure integration and massive production of sensor devices by forming a laminate structure of metal electrode layer and intermediate oxide layer and adopting the structure for the nano-gap electrode sensor. The process includes the steps of: (a) partitioning top side of an oxide layer into first, second and third regions; (b) forming first metal electrode layer(20,60) on the first and second regions and preparing an intermediate oxide layer over the first metal electrode layer; (c) forming second metal electrode layer(40,80) on the first and third regions and preparing another intermediate oxide layer over the second metal electrode layer; (d) repeatedly performing the steps of (b) and (c) to laminate multiple metal electrode layers and the intermediate layers(30,50,70); (e) forming multiple channels to pass through all of the metal electrode layers and the intermediate layers; and (h) partially etching the intermediate oxide layers to form nano-gaps between the first and second metal electrode layers.
Abstract:
A method for crystallizing silicon, a thin film transistor manufactured by the same, and its manufacturing method are provided to improve electron mobility of the thin film transistor by metal-catalyst-induced crystallization. A crystalline filter(120) is formed on a substrate(100). A metal catalyst layer(130) is formed in the crystalline filter. A resist pattern having holes is formed on the substrate. The substrate is patterned along the resist pattern to form the crystalline filter of a well structure. An amorphous silicon layer(140) is deposited on the whole substrate including the crystalline filter. The substrate is thermally processed to crystallize the amorphous silicon layer by metal-catalyst-induced crystallization, so that electron mobility of a thin film transistor is improved.
Abstract:
충돌 이온화를 이용한 트랜지스터 및 그 제조 방법을 제시한다. 본 발명에 따르면, 반도체 기판 상에 게이트 유전막, 게이트 및 제1 및 제2 측벽 스페이서를 형성하고, 반도체 기판에 불순물을 경사 이온 주입하여 게이트 및 제1 및 제2스페이서에 마스킹(masking)되어 제1스페이서로부터 이격된 제1불순물층 및 제2스페이서 아래에 중첩되게 연장된 제2불순물층을 형성한다. 상호 간의 사이의 반도체 기판 영역을 이온화 영역으로 설정하는 소스 및 드레인을 제1 및 제2스페이서에 각각 자기 정렬되게 반도체 기판 상에 형성한다. 이때, 소스가 이온화 영역과 쇼트키 접합(schottky junction)을 이루게 제1금속 실리사이드막을 포함하여 형성되고, 드레인이 제2스페이서 아래에 중첩되는 제2불순물층 부분 및 제2불순물층 영역과 저항성 접촉(ohmic contact)을 이루게 제2스페이서에 정렬되는 제2실리사이드막을 포함하여 형성된다. 충돌 이온화, 애벌랜치 항복, 실리사이드, 쇼트키 장벽, 비대칭 소스 드레인
Abstract:
SOI 소자를 구현하는 데 있어서 채널에서 자기가열 현상에 의하여 발생되는 열의 분산 능력이 우수한 MOSFET 소자 및 그 제조 방법에 관하여 개시한다. 본 발명에 따른 MOSFET 소자는 기판상에 형성된 메사형 활성 영역과, 상기 기판과 상기 활성 영역과의 사이에 개재되어 있는 매몰 산화막과, 상기 활성 영역 및 상기 매몰 산화막의 주위를 포위하도록 형성되며 상기 매몰 산화막 보다 더 큰 열전도도를 가지는 소자분리 영역을 포함한다. 상기 활성 영역 위에는 게이트가 형성되고, 상기 활성 영역과 상기 게이트와의 사이에는 게이트 절연막이 개재되어 있다. 상기 게이트의 양측에서 상기 활성 영역 내에는 소스/드레인 영역이 형성되어 있다. SOI, 열전도도, 싱크, 소자분리 영역,매몰 산화막, 채널
Abstract:
SOI 기판을 이용한 극소 채널의 SOI 모스펫(MOSFET) 소자의 제조방법을 제공한다. 본 발명은 HSQ(hydrogen silsesquioxane)막의 리플로우(reflow) 공정을 이용하여 엘리베이티드 소스/드레인(ESD, elevated source/drain)을 형성하고, 저유전율의 절연막을 층간 절연막으로 형성한다. 이에 따라, 본 발명은 저저항의 소스/드레인 및 저유전율의 층간 절연막과 매우 얇은 두께의 실리콘 채널층을 갖는 SOI 기판을 사용함으로 단채널 효과를 억제할 수 있고 구동 능력이 향상되고 RC 지연 시간이 향상된 저전력 및 고속 동작의 SOI 모스펫 소자를 제조할 수 있다.
Abstract:
이중 게이트 전극을 구비하는 모스펫 소자 및 그 제조방법을 제공한다. 본 발명의 모스펫 소자는 단결정 실리콘층에 형성된 소스/드레인 영역과 그 사이에 형성된 채널 영역과, 상기 채널 영역 상의 일부에 형성되고, 주 게이트 절연막 및 주 게이트 전극으로 구성된 주 게이트 스택과, 상기 주 게이트 스택의 양측벽, 상기 채널 영역의 일부 및 소스/드레인 영역 상에 형성되고, 확장부 형성 게이트 절연막 및 확장부 형성 게이트 전극으로 구성된 확장부 형성 게이트 스택을 포함하여 이루어진다. 본 발명의 모스펫 소자는 상기 확장부 형성 게이트 전극을 통하여 상기 주 게이트의 양측 하부에 소스/드레인 확장부를 전기적으로 형성할 수 있어 단채널 효과 억제에 유리하고 구동 능력을 향상시킬 수 있다.
Abstract:
SOI 소자를 구현하는 데 있어서 채널에서 자기가열 현상에 의하여 발생되는 열의 분산 능력이 우수한 MOSFET 소자 및 그 제조 방법에 관하여 개시한다. 본 발명에 따른 MOSFET 소자는 기판상에 형성된 메사형 활성 영역과, 상기 기판과 상기 활성 영역과의 사이에 개재되어 있는 매몰 산화막과, 상기 활성 영역 및 상기 매몰 산화막의 주위를 포위하도록 형성되며 상기 매몰 산화막 보다 더 큰 열전도도를 가지는 소자분리 영역을 포함한다. 상기 활성 영역 위에는 게이트가 형성되고, 상기 활성 영역과 상기 게이트와의 사이에는 게이트 절연막이 개재되어 있다. 상기 게이트의 양측에서 상기 활성 영역 내에는 소스/드레인 영역이 형성되어 있다.