Abstract:
A lithographic projection apparatus includes a support structure to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern; a projection system to project the patterned beam onto a target portion of a substrate; a substrate table configured to hold the substrate, the substrate table including a support surface to support an intermediary plate between the projection system and at least one of the substrate and an object positioned on the substrate table and not in contact with the at least one of the substrate and the object; and a liquid supply system to provide a liquid, through which the beam is to be projected, in a space between the projection system and the at least one of the substrate and the object.
Abstract:
Lithography apparatus and device manufacturing methods are disclosed in which means are provided for reducing the extent to which vibrations propagate between a first element of a projection system and a second element of a projection system. Approaches disclosed include the use of plural resilient members in series as part of a vibration isolation system, plural isolation frames for separately supporting first and second projection system frames, and modified connection positions for the interaction between the first and second projection system frames and the isolation frame(s).
Abstract:
A lithographic projection apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern; a substrate table configured to hold a substrate; a projection system configured to project the patterned beam onto a target portion of the substrate; a liquid supply system configured to provide liquid to a space between the projection system and the substrate; and a shutter configured to isolate the space from the substrate or a space to be occupied by a substrate.
Abstract:
A field manipulator to provide high resolution control of position in the XY plane and/or focus control. The field manipulator includes a plate located between the patterning device and the substrate. Control of the XY position is provided by tilting of the plate, while control of the focus position may be provided by localized deformation of the plate. Both adjustments may be performed by one or more actuators that act upon one or more edges of the plate. In an embodiment, two substantially parallel plates are provided and focus control can be provided by changing the spacing between them. A liquid may be provided between the plates which may be temperature controlled to adjust the focus by changing the refractive index of the liquid.
Abstract:
Liquid is supplied to a space between the projection system and the substrate by an inlet. In an embodiment, an overflow region removes liquid above a given level. The overflow region may be arranged above the inlet and thus the liquid may be constantly refreshed and the pressure in the liquid may remain substantially constant.
Abstract:
A pellicle that includes graphene is constructed and arranged for an EUV reticle. A multilayer mirror includes graphene as an outermost layer.
Abstract:
A lithographic projection apparatus is disclosed for use with an immersion liquid positioned between the projection system and a substrate, Several methods and mechanism are disclosed to protect components of the projection system, substrate table and a liquid confinement system. These include providing a protective coating on a final element of the projection system as well as providing one or more sacrificial bodies upstream of the components. A two component final optical element of CaF2 is also disclosed.
Abstract:
An apparatus or method to calculate target dose values of a plurality of radiation beams at a plurality of different times in order to form a desired dose pattern on a target, each target dose value defining the dose distribution of a spot exposure formed by the radiation beam to which the target dose value is applied, wherein a nominal position of a characteristic point in the dose distribution of each of the spot exposures lies at a point of a spot exposure grid, and to provide target dose values at the resolution of the spot exposure grid by calculating target dose values at grid points on a lower resolution grid, the lower resolution grid having a resolution lower than the spot exposure grid, and for each of the calculated target dose values, deriving a target dose value at each of a plurality of points in the spot exposure grid.
Abstract:
A lithographic projection apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern; a substrate table configured to hold a substrate; a projection system configured to project the patterned beam onto a target portion of the substrate; a liquid supply system configured to provide liquid to a space between the projection system and the substrate; and a shutter configured to isolate the space from the substrate or a space to be occupied by a substrate.
Abstract:
In a lithographic projection apparatus, a structure surrounds a space between the projection system and a substrate table of the lithographic projection apparatus. A gas seal is formed between said structure and the surface of said substrate to contain liquid in the space.