Abstract:
A wireless tramsmit receive unit (WTRU) and a method provide controlled transmitter power in a wireless communication system in which both dedicated and shared channels are utilized. A network unit preferably has a receiver for receiving UL user data from WTRUs on uplink dedicated channels, UL DCHs, and at least one uplink shared channel, UL SCH, and a processor for computing target metrics for UL DCHs based on the reception of signals transmitted by a WTRU on an UL DCH associated with an UL SCH usable by the WTRU. A shared channel target metric generator is provided that is configured to output a respective UL SCH target metric derived from each computed UL DCH target metric. Each WTRU preferably has a processor which is configured to compute UL DCH power adjustments for an UL DCH associated with an UL SCH as a function of UL DCH target metrics computed by the network unit based on the reception of signals transmitted by the WTRU on the UL DCH and UL SCH power adjustments for the associated UL SCH as a function of the respective UL SCH target metrics output from the shared channel target metric generator. Preferably, the target metrics are target signal to interference ratios (SIRs).
Abstract:
A wireless communication system having a Node B and a plurality of wireless transmit/receive units (WTRUs), includes a contention-based uplink (UL) channel and at least one downlink (DL) physical channel. The UL channel supports UL transmissions from the WTRUs to the Node B. The UL channel is randomly accessed by a WTRU when the WTRU is ready to transmit data. The DL physical channel supports DL transmissions from the Node B to the WTRUs. The DL transmissions include an acquisition indicator and information regarding said acquisition indicator. The acquisition indicator confirms whether the data transmitted over said UL channel was successfully received by the Node B.
Abstract:
At a first user equipment (UE), an uplink signal of at least one second UE is received and time marked (401). At the first UE, a downlink signal from at least one base station is received and time marked (402). Observed time differences of arrival are determined using the time markings (403). A position of the first UE is determined based on the determined time differences of arrival (404).
Abstract:
A wireless communication system including at least one IEEE 802 multi-stack wireless transmt/receive unit (WTRU) and a plurality of technologically diversified acess networks, such as IEEE 802.X networks and Third Generation Partnership Project (3GPP) networks, that are concurrently deployed. Both the multi-stack WTRU and the technologically diversified networks includ a media indipendent handover (MIH) function. The WTRU is configured to read MIH information transmitted from one of the IEEE 802.X networks, trigger 3GPP authentication and atuhorization procedures based on the MIH information, obtain a local Internet Protocol (IP) address, establish a tunnel to a packet data gateway (PDG) un a 3GPP core network, constructed a care of address (CoA) and register the CoA with a home agent of the WTRU, whereby data destined for the WTRU is routed via the home agent through a new tunnel established between the home agent and a foreign agent based on the CoA.
Abstract:
A method and wireless communication system for providing channel assignment information used to support an uplink (UL) channel and a downlink (DL) channel. The system includes at least one Node-B and at least one wireless transmit/receive unit (WTRU). The WTRU communicates with the Node-B via a common control channel, the UL channel and the DL channel. The WTRU receives a message from the Node-B via the common control channel. The message includes an indication of whether the message is intended for assigning radio resources to the UL channel or the DL channel. The WTRU determines whether the message is intended for the WTRU and, if so, the WTRU determines whether the message is for assigning radio resources to the UL channel or the DL channel. The WTRU takes an appropriate action based on whether the message is for assigning radio resources to the UL channel or the DL channel.
Abstract:
A system and method for improved cell searching includes a subframe (Fig. 2) having a Primary Synchronization Code (22), which is comment to all Node Bs in the system and is used to indicate the positions of a set of Secondary Synchronization Codes. This greatly simplifies the cell searching procedure and improves cell search performance. In one embodiment, the Primary Synchronization Code (22) is sent in the PCCPCH (12) and the Secondary Synchronization Codes the are sent in the DwPTS (14) timeslot.