Abstract:
Techniques to detect for DTX frames in a "primary" transmission that may be sent in a non-continuous manner using a "secondary" transmission that is sent during periods of no transmission for the primary transmission. The primary and secondary transmissions may be the ones sent on the F-DCCH and Forward Power Control Subchannel, respectively, in an IS-2000 system. In one method, a determination is first made whether or not a frame received for the primary transmission in a particular frame interval is a good frame (e.g., based on CRC). If the received frame is not a good frame, then a determination is next made whether the received frame is a DTX frame or an erased frame based on a number of metrics determined for the primary and secondary transmissions. The metrics may include symbol error rate of the received frame, secondary transmission (e.g., PC bit) energy, and received frame energy.
Abstract:
In an antenna diversity environment, the timing offset of the receiver's fingers are based on the timing offset of the received peaks of the base station transmit signals. In a system with non-negligible multipath spacing, the timing offset of the received peaks of the base station transmit signals are not necessarily at the same location. In one embodiment, the demodulating elements for the signal from each base station antenna use the same offset for demodulating and determining an error signal based on pilot signal sampling prior to the timing offset and subsequent to the timing offset. The error signals are averaged and used by a time tracking loop to track the incoming signal. In another embodiment, the demodulating elements for the signal from each base station antenna independently time track the signals with different timing offsets for each finger. The preferred embodiment depends on the method used by the base station to multiplex the data onto multiple transmit antennas.
Abstract:
A velocityx estimate is determined from a recevied signal by counting the number of times a signal in one multipath crosses a predetermined threshold in a given amount of time. A signal is received and a single multipath is extracted from the received signal. Instantaneous envelope values of the extracted multipath are calculated. A plurality of the instantaneous envelop e valures are used to calculate a running RMS value. A level crossing threshol d is determined using the running RMS value. The number of times the instantaneous envelope value crosses the level crossing threshold is counted . The number of level crossings is mapped to a velocity estimate.
Abstract:
Techniques for detecting zero rate frames in a received data transmission. A modulated signal is received and demodulated in accordance with a particular demodulation format to generate demodulated symbols. The demodulated symbols are partitioned into a number of received frames. For each received frame, a quality metric is computed and compared against a threshold value. The threshold value is selected based, in part, on the quality metrics of received frames. Based on the comparison result, the received frame is indicated as being either transmitted and received in error (i.e., erased or bad) or not transmitted at all (i.e., zero rate or empty). The quality metric can relate to an energy of a received frame, a distance between a received frame and a codeword corresponding to the received frame, or other metrics. The threshold value can be selected based on the quality metrics computed for decoded frames or received frames identified as good, and can be dynamically adjusted based on current information available at the receiver. The method is advantageously used in a CDMA communications system.
Abstract:
Techniques for detecting zero rate frames in a received data transmission. A modulated signal is received and demodulated in accordance with a particular demodulation format to generate demodulated symbols. The demodulated symbols are partitioned into a number of received frames. For each received frame, a quality metric is computed and compared against a threshold value. The threshold value is selected based, in part, on the quality metrics of received frames. Based on the comparison result, the received frame is indicated as being either transmitted and received in error (i.e., erased or bad) or not transmitted at all (i.e., zero rate or empty). The quality metric can relate to an energy of a received frame, a distance between a received frame and a codeword corresponding to the received frame, or other metrics. The threshold value can be selected based on the quality metrics computed for decoded frames or received frames identified as good, and can be dynamically adjusted based on current information available at the receiver. The method is advantageously used in a CDMA communications system.
Abstract:
A method, an apparatus, and a computer-readable medium for delivering content to end user via shared broadcast are provided. The apparatus may be a UE that determines to acquire a MBMS service. The UE tunes to a frequency provided by a first MNO to which the UE is not a subscriber in order to receive the MBMS service via a carrier shared by the first MNO and at least one other MNO. The UE receives the MBMS service on the frequency via the carrier shared by the first MNO and the at least one other MNO. The shared carrier may have a common SFN timing with respect to the first MNO and the at least one other MNO. The shared carrier may include a shared MBMS SDL carrier. The shared carrier may include a standalone shared carrier for receiving the MBMS service and control information associated with the MBMS service.
Abstract:
Certain aspects relate to methods and apparatus for latency reduction for UEs in a RRC connected mode. During contention-based uplink access by groups of UEs within a subframe, an eNB may decode the received uplink transmission based, at least in part, on the assigned group of resources assigned to the UE and used for transmission. Additional orthogonalization techniques such as reduced TTI size can be used to reduce collisions among different users performing contention-based transmissions. Furthermore, when the eNB fails to successfully decode the uplink transmission, the eNB may identify the UE that sent the uplink transmission based on a detected reference signal and may transmit an uplink assignment to the identified UE.
Abstract:
Various techniques for receiving broadcast at a mobile broadcast receiver are described. In an aspect, the broadcast receiver provides user notification and/or automatically launches an application based on user preferences. In another aspect, the broadcast receiver improves channel switching time by predicting future channel selection based on real-time monitoring of user inputs. In another aspect, the broadcast receiver supports drag-and-drop user interface. In another aspect, the broadcast receiver provides additional information associated with a selected broadcast stream. In another aspect, the broadcast receiver processes a broadcast stream and sends output data to an external device for further processing and/or display. In another aspect, the broadcast receiver simultaneously displays live content and stored content. In another aspect, the broadcast receiver simultaneously receives multiple broadcast streams for displayed on one or more display units. In another aspect, the broadcast receiver collects user statistics and sends the statistics to a network entity.
Abstract:
Techniques for performing partial cyclic prefix discarding are described. A user equipment (UE) may reduce the amount of cyclic prefix to discard for the last OFDM symbol prior to a switch from data reception to data transmission. This may allow the UE to complete data reception earlier and to switch to data transmission in a timely manner. In one design, the UE may receive a first OFDM symbol and discard a first amount of cyclic prefix for the first OFDM symbol. The UE may then receive a second OFDM symbol and discard a second amount of cyclic prefix for the second OFDM symbol. The second amount of cyclic prefix to discard may be determined based on the amount of time needed to switch from data reception to data transmission, which may be dependent on the amount of time advance between transmit timing and receive timing at the UE.
Abstract:
Techniques for detecting and suppressing jammers are described. A receiver may perform post-FFT jammer detection and pre-FFT jammer suppression. The receiver may transform an input signal to obtain a frequency-domain signal and may detect for jammers in the input signal based on the frequency-domain signal. The receiver may determine powers of a plurality of carriers based on the frequency-domain signal and may detect for jammers based on peaks in the powers of these carriers. The receiver may filter the input signal (e.g., with a notch filter) to suppress the detected jammers. Alternatively or additionally, the receiver may perform post-FFT jammer detection and post-FFT jammer suppression. The receiver may determine whether jammer is present on each carrier based on data power and channel power for that carrier. The receiver may modify (e.g., zero out or reduce) the frequency-domain signal on carriers with detected jammers.