Abstract:
Sistema aéreo remoto para medir variables ambientales en espacios cerrados y dispositivo aéreo remoto, para ser utilizado, por ejemplo, en invernaderos o instalaciones similares, y que comprende esencialmente el dispositivo (2) aéreo o estructura que vuela y una base (6) para recarga y estacionamiento. Asimismo, el dispositivo aéreo conformado por dicha estructura incorpora sensores de medición de variables ambientales y un sistema de navegación que no utiliza GPS, para poder ser utilizado en espacios interiores o cerrados. El dispositivo aéreo puede incorporar un globo o bolsa (3) de helio que sustenta la estructura en el aire.
Abstract:
To improve overall performance and reduce the weight of an unmanned aerial vehicle (UAV) an inflatable structure was invented to directly support systems for propulsion and control system of the UAV. Independent claims have been implemented to obtain a relatively small radar footprint, methods to obtain a reduced visibility, methods to realize a hybrid power supply, methods for transporting the different components of the inflatable UAV.
Abstract:
Described herein is a multi-rotor aircraft (10; 200) including: - a load-bearing structure (10A; 200A); and - a plurality of propulsion assemblies (M1, M2, M3, M4, M5, M6; M1', M2', M3', M4') each including a rotor (R1, R2, R3, R4, R5, R6; R1', R2', R3', R4'), which can be driven in rotation about a respective axis of rotation (X1, X2, X3, X4, X5, X6; X1', X2', X3', X4'), these propulsion assemblies being coupled to and supported by the load-bearing structure (10A; 200A), wherein the load-bearing structure (10A; 200A) is inflatable (C11, C12, C13, C14, C15, C16; C200).
Abstract:
A system and method for deploying a payload with an aerostat uses a mobile transporter for moving the system to a deployment site. Structurally, the system includes a base unit with a rotation head mounted thereon. An envelope container for holding a deflated aerostat is mounted on the rotation head and a rotation of the container on the rotation head positions the aerostat for optimal compliance with the existing wind condition. Also included in the system is an inflator that is mounted on the base unit to inflate the aerostat with a Helium gas. And, the system includes a tether control unit for maintaining a connection with the aerostat during its deployment, in-flight use, and recovery. Preferably, a deployment computer is used for a coordinated control of the rotation head, inflator and tether.
Abstract:
An aerial vehicle is described which comprises: a first compartment for holding a lighter than air gas; a second compartment for holding atmospheric air and having an inlet and an outlet; a solar panel for converting sunlight into electricity; a compressor for pumping atmospheric air through the inlet into the second compartment; control means for controlling the pitch and yaw of the vehicle; and a controller for controlling the buoyancy of the vehicle via the compressor and the outlet such that the vehicle is either lighter than the surrounding air and rising or heavier than the surrounding air and falling, and for controlling the control means such that the rising and falling motion includes a horizontal component. In another embodiment the solar panel is replaced by an engine and a fuel tank for storing fuel for the engine is also provided. The aerial vehicle can remain airborne for extended periods by using buoyancy propulsion. In the embodiments including a solar panel, a system including a light transmission station may be provided to supply energy to the solar panel from the light transmission station rather than relying on the incident sunlight alone. A method of flight using buoyancy propulsion is also described.
Abstract:
A flight vehicle includes a drone with a pair of shaped protrusions mechanically coupled to the drone. One of the shapes is a hollow lift-producing shape, such as being a balloon filed with a lighter-than-air gas, and the other of the shapes is below the drone. The shape below the drone may be a hollow shape that does not produce lift, for example being a balloon filled with air. The shapes may be similar in size and shape, so as to provide similar drag characteristics. The shapes may be opposite ends of a support, such as a stick, rod, or other (relatively) slender structure. The vehicle includes a payload, such as radar calibration equipment or an antenna. The drone may be used to counteract wind forces on the flight vehicle, and/or to otherwise position the flight vehicle.
Abstract:
According to embodiments described in the specification, a hover attachment includes a housing operable to receive a mobile device having a processor, a memory, and a display, at least one sensor operable to detect a position parameter of the mobile device relative to an object under tracking, and a regulator operable to maintain, responsive to the detecting, the mobile device in a hover relation to the object under tracking, wherein the display of the mobile device is a situational display. An exemplary method includes providing a situational display interface on a display of a mobile device mounted in a hover attachment, detecting a movement of an object under tracking in hover relation to the mobile device, and when the detected movement is associated with a position change function, controlling the hover attachment to maintain the hover relation between the mobile device and the object under tracking.
Abstract:
The present invention provides a flying robot (10) with projector, including a movable end (100) and a fixed end (200). A distributed working mode is used on the movable end (100) and the fixed end (200). The movable end (100) includes a top (110), a main body (120) and a bottom (130). The top (110) includes a lift system (112) and one or more proximity sensors (114); the main body (120) is a sealed hollow spherical body or spheroid body made of a film material capable of being used as a rear projection screen, and is filled with a gas of which the density is less than that of the air. The bottom (130) includes one or more rear projectors (131), a wireless communication module (132), a microcontroller (133), a battery (134), a direction and steering controlling device (135), a camera device (136), a sound capturing and reproduction device (137), a height sensor (138) and other sensors, etc. The fixed end (200) includes a wireless communication module (220), a control apparatus (240), a charging port (260), and other data interfaces, etc. The flying robot (10) with projector according to the present invention facilitates human-machine interaction and is suitable for being used in both indoor and outdoor environments.
Abstract:
Designing intrinsically safe robotic inspection systems used for unmanned navigation and inspection of large tanks with hazardous and explosive atmosphere is challenging. The disclosed methods and devices provide solutions to overcome such challenge. Intrinsically safe devices and methods using a combination of a lighter-than-air blimp with various intrinsically safe subsystems attached to the blimp are presented.