Abstract:
A micromachine and a manufacturing method according to the present invention are suitable for a micromachine that has a dynamic first microstructured portion serving as a drive portion, and a static second microstructured portion adapted to perform a switching function and functions to be performed as an optical element. The second microstructured portion can be manufactured at least without complex steps, such as a silicon process, by forming a static second microstructure on the dynamic first microstructured portion or in such a way as to be overlaid thereon by mold transfer. Thus, the microstructured portion of a complex shape can be easily formed with good reproducibility. This contributes to increased productivity thereof. Especially, when a plurality of elements are arranged in an array, similarly as in the case of a spatial light modulator, the stable reproduction thereof is achieved by the mold transfer. Thus, as compared with the case of manufacturing all elements in a silicon process, the probability of an occurrence of a defect is very low. Consequently, this contributes to improved yield of micromachines.
Abstract:
A capacitive MEMS device is formed having a material between electrodes that traps and retains charges. The material can be realized in several configurations. It can be a multilayer dielectric stack with regions of different band gap energies or band energy levels. The dielectric materials can be trappy itself, i.e. when defects or trap sites are pre-fabricated in the material. Another configuration involves a thin layer of a conductive material with the energy level in the forbidden gap of the dielectric layer. The device may be programmed (i.e. offset and threshold voltages pre-set) by a method making advantageous use of charge storage in the material, wherein the interferometric modulator is pre-charged in such a way that the hysteresis curve shifts, and the actuation voltage threshold of the modulator is significantly lowered. During programming phase, charge transfer between the electrodes and the materials can be performed by applying voltage to the electrodes (i.e. applying electrical field across the material) or by UV-illumination and injection of electrical charges over the energy barrier. The interferometric modulator may then be retained in an actuated state with a significantly lower actuation voltage, thereby saving power.
Abstract:
A display apparatus comprises a modulator for selectively interacting with light in an optical path to form an image on the display apparatus. A controllable first electrostatic actuator provides a first mechanical support for the modulator, the first mechanical support providing a supportive connection from a first location on the modulator to a surface over which the modulator is supported. A second mechanical support provides a supportive connection from a second location on the modulator to the surface. The first electrostatic actuator drives the modulator in a plane substantially parallel to the surface.
Abstract:
A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1 - 103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
Abstract:
A plate (21) vertically movable with respect to substrate (11), is fixed to the substrate through flexure units (27a,27b). The electrodes (23a,23b) of the plate, generate an electrostatic force between the plate and substrate by voltage application. The plate is provided with a mirror (12) that is capable of moving into or back from an optical path. Independent claims are also included for the following: (1) micro-actuator device; (2) optical switch; and (3) optical switch array.
Abstract:
Apparatus and methods for arranging devices having a reduced area between adjacent devices are provided. In an exemplary embodiment, display devices 100 in an array 85 are provided wherein a gap 123 between the display devices 100 is reduced to less than or equal to 1/8 th of a pixel pitch. Exemplary embodiments use wire bonding 125 to provide an electrical connection to an active area of the display to components on the display backplate, thereby reducing the ledge area and gap between display devices in an interconnected array.
Abstract:
Apparatus and methods for arranging devices having a reduced area between adjacent devices are provided. In an exemplary embodiment, display devices 100 in an array 85 are provided wherein a gap 123 between the display devices 100 is reduced to less than or equal to 1/8 th of a pixel pitch. Exemplary embodiments use wire bonding 125 to provide an electrical connection to an active area of the display to components on the display backplate, thereby reducing the ledge area and gap between display devices in an interconnected array.