Abstract:
A preform for a low loss fiber optic cable and method and apparatus for fabricating such a preform is provided. The method includes providing AlCl3 and CVD precursors and locally doping CaCl3. Alkali and/or alkaline earth fluxing agents can be introduced. The alkali and/or alkaline earths are doped along with the aluminum into the silica glass core.
Abstract:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
Abstract:
An optical fiber having a cladding region surrounding a core region having an elongate core hole, the inner or outer surface of the core hole having a surface roughness with a spatial period equal to or less than 5 μm by a spectral power below 0.0017 nm2μm−1. A method of making an optical fiber including a cladding region having an arrangement of elongate cladding holes in a matrix material, surrounding an elongate core region having an elongate core hole, the method including the step of increasing the surface tension of the matrix material prior to or during the step of heating and drawing the fiber.
Abstract:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
Abstract:
A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
Abstract:
The present invention is directed to a method and apparatus for forming soot used in making glass, and in particular, optical waveguides. A liquid precursor (66) is first fed into orifice (52) of a liquid orifice insert (48) within an injector (44) positioned within an atomizing burner assembly, and is thereafter discharged from the injector into a pressurization chamber (56). An atomization gas (70) is also fed into the pressurization chamber (56) to mix with the liquid precursor liquid stream (68) which breaks into droplets (76). The liquid precursor and atomization gas arm forced under pressure out of an atomization orifice (32) on the face of the burner (30) assembly. Flame gas (74), reaction gas (84) and shield gas (82) are ejected from burner orifices (40, 38, 36 and 34) to produce the flame. The atomized liquid precursor thus discharged is fed into the flame (72) produced at the face of the burner assembly where the atomized liquid precursor reacts with the flame to form soot (78) on a rotating mandrel (80).
Abstract:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
Abstract:
A method of making fused silica includes generating a plasma, delivering reactants comprising a silica precursor into the plasma to produce silica particles, and depositing the silica particles on a deposition surface to form glass.
Abstract:
An object of the present invention is to provide a quartz glass body, especially a quartz glass jig for plasma reaction in producing semiconductors having excellent resistance against plasma corrosion, particularly, excellent corrosion resistance against F-based gaseous plasma; and a method for producing the same. A body made of quartz glass containing a metallic element and having an improved resistance against plasma corrosion is provided that contains bubbles and crystalline phase at an amount expressed by projected area of less than 100 mm2 per 100 cm3.
Abstract:
This ultralow-loss glass is characterized in that high purity silica glass contains 1 to 500 wt.ppm of at least one network modifying oxide. It is assumed that the network modifying oxide appropriately loosens the tetrahedral network structure of silica and hence Rayleigh scattering is decreased. Examples of the network modifying oxide include Na.sub.2 O, K.sub.2 O, Li.sub.2 O, MgO, CaO, and PbO. Since Rayleigh scattering losses are minimal in comparison with those of high purity silica glass, this impurity-added silica glass is excellent as a base material of a glass fiber for a long-distance transmission.