Abstract:
하나의 양상에서, 가령 파로시아미터(Parosiameter)와 같이 스캐터로미터(100)로부터 얻어진 영상 세기 데이터를 저장 할 필요가 있는 데이터의 양은 상기 광도 데이터가 광도에 대한 변화에 따라 그리드의 다른 영역에서 사용되는 해상도를 변화시킴으로써 줄어든다. 또 다른 양상에서, 스캐터로미터는 상기 테스트 샘플에 대한 거울의 중심이 벗어난 배치에 의해 도입된 왜곡을 수정하기 위해 테스트 샘플(180)을 영상화하는 비구면 거울(170,900,1000)로 제공된다. 또 다른 양상에서, 광학 표면 검사 장치는 상기 테스트 표면상에 패턴 그리드(1610)를 투사하기 위하여 테스트 표면(1420)과 조명된 패턴 그리드(1410) 사이에 보조 렌즈(1440)를 사용한다. 카메라(1450)는 실제의 영상으로서 상기 테스트 표면상의 그리드에 초점이 맞춰진다.
Abstract:
Several different inspection systems and methods are described herein that identify defects (e.g., inclusions, onclusions, scratches, stains, blisters, cords or other imperfections associated with surface discontinuities or material non-homogeneities) on or within a glass sheet.
Abstract:
Embodiments of the present invention provide an apparatus for determining spectral information of a three-dimensional object, comprising a cavity (110) for location in relation to the object, an imaging light source (120) located in relation to the cavity, wherein the imaging source is controllable to selectively emit light in a plurality of wavelength ranges, structured light source (130) for emitting structured illumination toward the object, wherein the structured light source comprises a plurality of illumination devices arranged around the cavity, one or more imaging devices (140) for generating image data relating to at least a portion of the object, a control unit, wherein the control unit (1100) is arranged to control the structured light source to emit the structured illumination and to control the imaging light source to emit light in a selected one or more of the plurality of wavelength ranges, a data storage unit (1120) arranged to store image data corresponding to the structured illumination and each of the selected one or more of the plurality of wavelength ranges, and processing means (1110) arranged to determine depth information relating to at least a portion of the object in dependence on the image data corresponding to the structured illumination stored in the data storage means.
Abstract:
Methods are provided for the automated detection of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.
Abstract:
A glass sheet acquisition and positioning mechanism and associated method are utilized in an in-line glass sheet optical inspection system. The mechanism includes an exterior support frame mounted in proximity to one of the glass sheet processing system conveyors, and an interior support frame operably connected to the exterior support frame such that the interior support frame may be selectively positioned from its first orientation to a second orientation whereby the retained glass sheet is positioned between the camera and the screen at a preselected position. The interior support frame is also operably connected to the exterior support frame to provide for positioning of the interior support frame to a third orientation in which the glass sheet is released from the interior support frame for continued movement on the conveyor. An in-line glass sheet optical inspection system incorporating the glass sheet acquisition and positioning mechanism is also disclosed.
Abstract:
Systems and methods are provided for evaluating a fresh tissue sample, prepared as to fluoresce under illumination, during a medical procedure. A structured light source is configured to project a spatially patterned light beam onto the fresh tissue sample. An imaging system is configured to produce an image from fluorescence emitted from the illuminated fresh tissue sample. A system control is configured to provide a human-comprehensible clinically useful output associated with the medical procedure.
Abstract:
A planar sample, particularly of the type used in biological laboratories for detection and sometimes analysis of two-dimensional arrays of proteins, nucleic acids, or other biological species, is illuminated by epi-illumination using optically filtered line lights that are arranged along opposing parallel sides of a rectangle in which the sample array resides, with two coaxial line lights on each side of the rectangle, and the two on any given side being separated by a gap whose optimal width depends on the wavelength band transmitted by the optical filter. Surprisingly, the gap eliminates the peak in intensity at the center of the sample area and the decrease that occurs from the center outward that would otherwise occur with a single continuous filtered line light, producing instead a substantially uniform intensity along the direction parallel to the line lights.
Abstract:
In one aspect, the amount of data needed to store image intensity data obtained from a scatterometer (100) such as a Parousiameter is reduced by varying a resolution with which the intensity data is used in different regions of a grid according to determined variations in the intensity. In another aspect, a scatterometer is provided with an aspherical mirror (170, 900, 1000) for imaging a test sample (180) to correct for distortions introduced by the off center placement of the mirror relative to the test sample. In another aspect, an optical surface inspection apparatus uses an auxiliary lens (1440) between a test surface (1420) and an illuminated patterned grid (1410) to project the patterned grid (1610) on the test surface. A camera (1450) is focused on the grid on the test surface as a real image.
Abstract:
An information-acquiring device for acquiring information on an objective substance to be detected, which is provided with a sensing element (104) that has a surface capable of fixing the objective substance to be detected thereon, and makes applied light change its wavelength characteristics in response to the fixed state of the objective substance to be detected onto the surface, a light source (102), and light-receiving means (103) for receiving light (111, 112) emitted from the light source (102) through the sensing element (104), has the light-receiving means (103) and the light source (102) arranged on the same substrate (101) so that the light which has been emitted from the light source (102) and has been transmitted through the sensing element (104) can be led to the light-receiving means (103), and has means (107) for varying the wavelength regions of each light incident on each of a plurality of the light-receiving means (103) installed in an optical path from the light source (102) to the light-receiving means (103).
Abstract:
A device for discriminately illuminating a sample to be viewed with excitation light. For example, an image taken with a CCD provides feedback which is used to modulate the output of an excitation light source, thereby allowing a sample to be viewed within the optimal range of detection for the particular CCD device being used, despite the potential of wide dynamic ranges of sample luminescence.