Abstract:
An electron emission device and/or an electron emission display using the same includes a beam-focusing structure using an insulating layer. The beam-focusing structure has a first insulating layer formed on a plate. The first insulating layer has a predetermined thickness, and is formed with a first hole. A first electrode is formed on the first insulating layer and extending into the first hole. An electron emission portion is formed in the first hole and connected to the first electrode. A second insulating layer is formed on the first electrode and is also formed with a second hole through which the electron emission portion is at least partially exposed. A second electrode is formed on the second insulating layer. In the electron emission device and/or the electron emission display, an electric field between the first electrode and the second electrode causes the electron emission portion to emit an electron beam and focuses the electron beam from the electron emission portion.
Abstract:
Diamond microtip field emitters are used in triode vacuum microelectronic devices, sensors and displays. Diamond triode devices having integral anode and grid structures can be fabricated. Ultra-sharp tips are formed on the emitters in a fabrication process in which diamond is deposited into mold cavities in a two-step deposition sequence. During deposition of the diamond, the carbon graphite content is carefully controlled to enhance emission performance. The tips or the emitters are treated by post-fabrication processes to further enhance performance.
Abstract:
A field emission device (FED) and a method for fabricating the FED are provided. The FED includes micro-tips with nano-sized surface features. Due to the micro-tips as a collection of a large number of nano-tips, the FED is operable at low gate turn-on voltages with high emission current densities, thereby lowering power consumption.
Abstract:
A field emission device (FED) and a method for fabricating the FED are provided. The FED includes micro-tips with nano-sized surface features. Due to the micro-tips as a collection of a large number of nano-tips, the FED is operable at low gate turn-on voltages with high emission current densities, thereby lowering power consumption.
Abstract:
A field emission cold cathode sends forth uniform emission over the entire emission area and realizes, when applied to a flat screen display device and the like, a uniform brightness of images over the entire display area, providing a high quality field emission type cold cathode. An electron tube is equipped with the cold cathode. The cold cathodes structurally prevent a prolonged electric discharge with the use of trenches. Non-uniformity of resistance, resulting from the difference in extension of the depletion regions in each block divided by the trenches, can be prevented by an arrangement of blocks in which each block divided by trenches is placed to have a prescribed distance from an adjacent block, which makes emission currents in all blocks within the formed emitter area uniform at the time of normal operation, and thereby a good form in which depressions in the block corner sections are well suppressed can be obtained.
Abstract:
The invention relates to the structure of a field emitter device, to the method of fabricating a field emitter device and to the use of the field emitter device in the technical field of flat panel displays. The field emission device comprises an array (1) of widely-spaced tips (2) for emitting electrons and a perforated extracting electrode (3) facing the array of tips. An individual series resistor is formed by each of said tips itself. The widely-spaced tips are not surrounded by a layer of electrically insulating material. The tips are not surrounded by an insulating layer and the tip end is not surrounded by a gate or extraction electrode. This avoids failures like shorts between the cathode electrode and the gate or extraction electrode which could occur due to inaccurate coating or etching processes, and enhances the reliability and the life-time of the array of tips. To fabricate the field emission device, a micromechanically manufactured array (1) of widely-spaced tips (2) and a micromechanically manufactured perforated extracting electrode (3) are provided. The outer sides of the perforated extracting electrode are bonded to the array in a way that the perforated extracting electrode is facing the array. With the array of widely-spaced tips and the perforated extracting electrode being fabricated separately and bonded together subsequently, both the number of process steps required for each of the two parts and the manufacturing process costs are reduced.
Abstract:
A cold cathode field emission display is described. A key feature of its design is that each individual microtip has its own ballast resistor. The latter is formed from a resistive layer that has been interposed between the cathode line and the substrate. When openings for the microtips are formed in the gate line, extending down as far as the resistive layer, an overetching step is introduced. This causes the dielectric layer to be substantially undercut immediately above the resistive layer thereby creating an annular resistor positioned between the gate line and the base of the microtip.
Abstract:
Rod-shaped or cylindrical structures in the nm range on a substrate of silicon are manufactured. A first cylinder of silicon is selectively epitaxially deposited in the hole of a mask layer of oxide, and the mask layer is removed. The silicon is then oxidized to form an oxide layer having such a thickness that a thinner, second cylinder of silicon having practically the same height as the first cylinder remains. In a last step, this oxide layer is removed, so that the second cylinder forms a freestanding silicon rod on the surface of the substrate.
Abstract:
A baseplate for a flat panel display comprising relatively thick semiconductor substrate, wherein the semiconductor substrate is a macro-grain polycrystalline substrate, which is amorphized by ion implantation or reformed by recrystallization, to obscure the grain boundaries, thereafter redundant circuitry may be fabricated thereon to further enhance product yield.
Abstract:
A band for securing a catheter or similar device to a limb of a human comprising a stretchable primary strap adapted to encircle a limb. A part of the strap is made of a soft looped fabric and the strap also carries a male Velcro-type fastening material which cooperates with the looped fabric to enable the strap to be secured in place about the limb. A secondary strap made of a flexible material is secured, hooks up, intermediate its ends to the central portion of the primary strap on the looped fabric. The secondary strap is made of a male Velcro-type fastening material, and each end of the secondary strap is designed to be looped over and encircle the catheter or similar device and attach to the looped fabric to hold the catheter or similar device securely in place on the limb.