Abstract:
A Node-B/base station receiver comprises at least one antenna for receiving signals. Each finger of a pool of reconfigurable Rake fingers recovers a multipath component of a user and is assigned a code of the user, a code phase of the multipath component and an antenna of the at least one antenna. An antenna/Rake finger pool interface provides each finger of the Rake pool an output of the antenna assigned to that Rake finger. A combiner combines the recovered multipath components for a user to produce data of the user.
Abstract:
A DSSS detector (19) for detecting a synchronization between an aperiodic spread spectrum signal (r(nT c )) having a plurality of chips (r(n) ) and a spreading sequence (PN) having a plurality of chips (pi). The DSSS detector (19) has at least one branch (16) adapted to receive the spread spectrum signal, and the branch is formed by a plurality of correlators (1) cascade connected to each other and separated one another by a branch delay block (20). Each correlator (1) has a multiplier (12) for correlating chips (pi) of the spreading sequence (PN) with chips (r(n) ) of the spread spectrum signal (r(nT c )) and generating each an own correlation value (y(n)). The DSSS detector (19) further has a matching detector (22, 23, 27) receiving the correlation values (y(n) ) and detecting when all the correlation values (y(n)) are maximum.
Abstract:
A method including: using both dedicated circuitry and a programmable processor system for acquisition of a communication channel; and using the dedicated circuitry for tracking the acquired communication channel while using the programmable processor system for hosting an application that uses information dependent upon data dependent on the acquired communication channel.
Abstract:
An apparatus for performing a multipath search including a plurality of time-multiplexed chip correlators, wherein each of the plurality of time-multiplexed chip correlators has a pipeline, and further wherein each of the plurality of time-multiplexed chip correlators has a accumulation time is described. A method is described for performing a multipath search including performing multipath search slot processing, determining if a current multipath searching slot is a last multipath searching slot, if the current multipath searching slot is not the last multipath searching slot, then repeating the performing step, if the current multipath searching slot is the last multipath searching slot, then initializing a multipath searching slot index, determining if an non-coherent accumulation has been completed if the accumulation has not been completed then repeating all steps and if the accumulation has been completed, then search results are sorted to locate energy peaks corresponding to multipath locations.
Abstract:
A novel and improved method and apparatus for searching is described. This searcher combines the ability to search multiple offsets of single pilots, such as those found in the IS-95 system, with the ability to search multiple pilots, such as those found in a GPS location determination system. Both types of searching can be done in a single architecture combining the parallel computation features of a matched filter with the flexibility of allowing a variable number of non-coherant accumulations to be performed at high speed for a wide range of search hypotheses in a resource efficient manner. This invention allows for parallel use of the matched filter structure in a time-sliced manner to search multiple windows. In addition, the searcher allows for optional independent Walsh decovering for each search window. The time-sharing approach allows for optional frequency searching of any offset.
Abstract:
The present invention relates to re-configurable signal processing modules in particular, although not exclusively, for wireless communications terminals. In general terms in one aspect the present invention provides a system for reconfiguring a signal processing module having a number of re-configurable resources such as re-configurable hardware blocks including ASIC's and field programmable logic gate arrays (FPGA's), as well as software modules for implementing different functions and which can be run on a DSP or other processing platform within the signal processing module. The module may be a mobile terminal or a base station in a wireless communications system for example. The system comprises means for generating a commands data structure comprising configuration commands for the resources, and may further comprise means for communicating this data structure to the signal processing module. The module has means for reconfiguring itself using this data structure. Typically the data structure will be a process timetable having time stamped configuration and run-time commands suitable for being dispatched to the appropriate resource.