Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprises: an elongate member having an annular cross-section to define an elongate passageway aligned with a longitudinal axis of the lamp assembly; an electrode element in electrical connection with at least a portion of the elongate passageway; and a cooling element disposed in the elongate passageway, the cooling element being electrically isolated with respect to the electrode element.
Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprise a radiation emitting region and at least one substantially radiation opaque region. The radiation emitting region comprises a pair of dielectric elements disposed in a substantially coaxial arrangement.
Abstract:
The invention relates to an ultraviolet radiation lamp. The lamp comprises a substantially sealed cavity comprising a mercury-containing material; a filament disposed in the sealed cavity; and an electrical control element in contact with the filament, the electrical control element configured to adjust or maintain a temperature of the mercury-containing material with respect to a prescribed temperature. Such a constructions allows the present ultraviolet radiation lamp to be operated at optimal efficiency without the need to use additional components to add heat to and/or remove heat from the mercury-containing material.
Abstract:
There is described a photocatalyst composition of matter comprising a support material. A surface of the support material configured to comprise: (i) a first catalytic material for catalyzing the conversion of H 2 O to H 2 and O 2 , and (ii) a second catalytic material catalyzing reaction of hydrogen with a target compound. The photocatalyst composition of matter can be used to treat an aqueous fluid containing a target chemical compound, for example, by a process comprising the steps of: (i) contacting the aqueous fluid with the above-mentioned photocatalyst composition of matter; (ii) contacting the aqueous fluid with radiation during Step (i); (iii) catalyzing the conversion of water in the aqueous fluid to H 2 and O 2 with the first catalytic material; and (iv) catalyzing reaction of the target chemical compound in the aqueous fluid with hydrogen from Step (iii) in the presence of the second catalytic material to produce a modified chemical compound.
Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprises: an elongate member having an annular cross-section to define an elongate passageway aligned with a longitudinal axis of the lamp assembly; an electrode element in electrical connection with at least a portion of the elongate passageway; and a cooling element disposed in the elongate passageway, the cooling element being electrically isolated with respect to the electrode element.
Abstract:
There is described a fluid treatment system in which fluid to be treated is impinged under pressure on a radiation emitting surface. The fluid treatment system includes at least one radiation source having a radiation emitting surface and at least one nozzle element having a fluid discharge opening spaced from the radiation emitting surface. The fluid discharge opening is configured to impinge fluid to be treated on to at least a portion of the radiation emitting surface. The fluid treatment system is well suited to treating low transmittance fluid.
Abstract:
The present invention relates to an ultraviolet radiation lamp. The lamp comprises: (i) a substantially sealed cavity comprising a mercury-containing material; and (ii) a heating unit disposed exteriorly with respect to the cavity. The heating unit is disposed in contact with a first portion of the cavity comprising the mercury- containing material. The heating unit has adjustable heat output.
Abstract:
There is disclosed an optical radiation sensor device. The device includes a radiation collector for receiving radiation from a predefined arc around the collector within the field and redirecting the received radiation along a predefined pathway; motive means to move the radiation collector from a first position in which a first portion of the predefined arc is received by the radiation collector and a second portion in which a second portion of the predefined arc is received by the radiation collector; and a sensor element capable of detecting and responding to incident radiation along the pathway when the radiation collector is in the first position and in the second. The use of the optical radiation sensor device in a radiation source module and in a fluid treatment system is also described.
Abstract:
There is described a chemical injection system. Preferably, the system comprises a number of tubular members. The distal end of each tubular member is configured to be immersed in a flow of fluid and the proximal end of each tubular member is connected to a chemical supply. The system further includes a guide member for receiving at least one tubular member. The guide member is configured to orient the at least one tubular in a predetermined region of the flow of fluid. The chemical injection system may be regarded as a trailing array of flexible injection lines. By balancing the flexibility, length, weight, diameter, buoyancy, hydrodynamic characteristics and/or the angle at which each flexible injection line is positioned relative the flow of fluid, it is possible to dispose the distal end of each flexible injection line in a pre-determined region in the flow of fluid.
Abstract:
There is disclosed an ultraviolet radiation device. The device comprises a base portion, a plurality of semiconductor structures connected to the base portion and an ultraviolet radiation transparent element connected to the plurality of semiconductor structures. Preferably: (i) the at least one light emitting diode is in direct contact with the ultraviolet radiation transparent element, or (ii) there is a spacing between the at least one light emitting diode and the ultraviolet radiation transparent element, the spacing being substantially completely free of air. There is also disclosed a fluid treatment system incorporating the ultraviolet radiation device.