Abstract:
A method for processing a plurality of substrates in a plasma processing chamber of a plasma processing system, each of the substrate being disposed on a chuck and surrounded by an edge ring during the processing. The method includes processing a first substrate of the plurality of substrates in accordance to a given process recipe in the plasma processing chamber. The method further includes adjusting, thereafter, a capacitance value of a capacitance along a capacitive path between a plasma sheath in the plasma processing chamber and the chuck through the edge ring by a given value. The method additionally includes processing a second substrate of the plurality of substrates in accordance to the given process recipe in the plasma processing chamber after the adjusting, wherein the adjusting is performed without requiring a change in the edge ring.
Abstract:
A plasma processing reactor (200) includes a chamber (202) and a substrate support (216). The chamber includes an opening extending through a sidewall of the chamber. The substrate support is removably mounted within the chamber. The opening of the chamber is large enough to allow the substrate support to be removed from the chamber through the opening. A portion of a surface of the inner sidewall and the substrate support within the chamber has a coating (228). The coating is made of an electrically resistive material. The coating creates an impedance a long the portion of the surface of the inner sidewall, which would otherwise carry a greater portion of the RF return current than the opposite side of the chamber. The coating also creates an impedance along the substrate support so that t he density of the RF return current along the surface of the inner walls of the chamber is substantially more uniform
Abstract:
An etching system for etching a wafer of a material has a measuring device, an etching chamber, and a controller. The measuring device measures the critical dimension test feature (CD) along the profile of the wafer at a plurality of preset locations. The etching chamber receives the wafer from the measuring device. The etching chamber includes a chuck supporting the wafer and a plurality of heating elements disposed within the chuck. Each heating element is positioned adjacent to each preset location on the wafer. The etching system controller is coupled to the measuring device to receive the actual measured CD's for a particular wafer. The etching system controller is also connected to the plurality of heating elements. The controller adjusts the temperature of each heating element during a process to reduce the variation of critical dimensions among the plurality of preset locations by using temperature dependent etching characteristics of the etch process to compensate for CD variation introduced by the lithography process preceding the etch process.
Abstract:
A method of cleaning an ESC comprises immersing a ceramic surface of the ESC in dielectric fluid; spacing the ceramic surface of the ESC apart from a conductive surface such that the dielectric fluid fills a gap between the ceramic surface of the ESC and the conductive surface; and subjecting the dielectric fluid to ultrasonic agitation while simultaneously applying voltage to the ESC.
Abstract:
Methods for making gas distribution members for plasma processing apparatuses are provided. The gas distribution members can be electrodes, gas distribution plates, or other members. The methods include fabricating gas injection holes in a gas distribution member by a suitable technique, e.g., a mechanical fabrication technique, measuring gas flow through the gas distribution member, and then adjusting the permeability of the gas distribution member by the same fabrication technique, or by a different technique, e.g., laser drilling. The permeability of the gas distribution member can be adjusted at one or more zones of the member.
Abstract:
In a plasma processing system, a method of determining the temperature of a substrate is disclosed. The method includes positioning the substrate on a substrate support structure, wherein the substrate support includes a chuck. The method further includes creating a temperature calibration curve for the substrate, the temperature calibration curve being created by measuring at least a first substrate temperature with an electromagnetic measuring device, and measuring a first chuck temperature with a physical measuring device during a first isothermal state. The method also includes employing a measurement from the electromagnetic measurement device and the temperature calibration curve to determine a temperature of the substrate during plasma processing.
Abstract:
A method of cleaning an ESC comprises immersing a ceramic surface of the ESC in dielectric fluid; spacing the ceramic surface of the ESC apart from a conductive surface such that the dielectric fluid fills a gap between the ceramic surface of the ESC and the conductive surface; and subjecting the dielectric fluid to ultrasonic agitation while simultaneously applying voltage to the ESC.
Abstract:
A substrate support (40) useful for a plasma processing apparatus includes a metallic heat transfer member (48) and an overlying electrostatic chuck (50) having a substrate (70) support surface. The heat transfer member (48) includes one or more passage through which a liquid is circulated to heat and/or cool the heat transfer member. The heat transfer member has a low thermal mass and can be rapidly heated and/or cooled to a desired temperature by the liquid, so as to rapidly change the substrate (70) temperature during plasma processing.
Abstract:
A plasma processing reactor includes a chamber and a substrate support. The chamber includes an opening extending through a sidewall of the chamber. The substrate support is removably mounted within the chamber. The opening of the chamber is large enough to allow the substrate support to be removed from the chamber through the opening. A portion of a surface of the inner sidewall and the substrate support within the chamber has a coating. The coating is made of an electrically resistive material. The coating creates an impedance along the portion of the surface of the inner sidewall, which would otherwise carry a greater portion of the RF return current than the opposite side of the chamber. The coating also creates an impedance along the substrate support so that the density of the RF return current along the surface of the inner walls of the chamber is substantially more uniform.
Abstract:
A chuck for a plasma processor comprises a temperature-controlled base, a thermal insulator, a flat support, and a heater. The temperature-controlled base is controlled in operation a temperature below the desired temperature of a workpiece. The thermal insulator is disposed over at least a portion of the temperature-controlled base. The flat support holds a workpiece and is disposed over the thermal insulator. A heater is embedded within the flat support and/or mounted to an underside of the flat support. The heater includes a plurality of heating elements that heat a plurality of corresponding heating zones. The power supplied and/or temperature of each heating element is controlled independently. The heater and flat support have a combined temperature rate change of at least 1°C per second.