Abstract:
A preparation comprised of one or more pellets having an outer shell and core. The outer shell is made of dissolvable material and said core containing poly (ethylene glycol).
Abstract:
Micro/nano-structures fabricated by laser ablation and suitable for use in micro-arrays and micro-assays are described. In particular, micro-structures having combinatorial surfaces that allow molecules to attach to a localised area of the surface according to the characteristics of the localised area. Methods of fabricating such micro/nano-structures and their use in micro-arrays and micro-assays is also described.
Abstract:
The present invention is directed to methods of acutely improving or enhancing cardiovascular and/or cognitive function, comprising the administration of LCPUFAs, in particular docosahexanoic acid (DHA), uses and compositions thereof.
Abstract:
The invention relates in general to porous graphene-based films. In particular, the invention relates to a process for the preparation of a porous graphene-based films comprising reduced graphene oxide. The invention also relates to porous graphene-based films prepared by the process and to uses of such porous graphene-based films, in particular, in filtration applications. The invention further relates to porous multi-zone graphene-based films comprising different zones of different porosity.
Abstract:
Methods and apparatus for recording and retrieval of optically readable data employ a recording medium (100) which comprises an optically active material (108) able to induce a change in properties of the medium in the presence of optical radiation having a first characteristic, such as a first optical frequency, and wherein the change in properties can be inhibited by optical radiation having a second characteristic, such as a second optical frequency. During recording, a region of the recording medium (100) is irradiated with a first beam (506) of optical radiation having the first characteristic, the beam having a sufficient intensity within a central portion of the irradiated region and being of sufficient duration to cause an optically induced change in properties of the recording medium. Simultaneously, the region of the recording medium (100) is irradiated with a second beam (508) of optical radiation having the second characteristic, the second beam having a local intensity minimum within the central portion of the irradiated region, and a local intensity maximum in at least one portion of the irradiated region adjacent to the central portion which is sufficient to inhibit the optically induced change in properties of the recording medium. A similar method is employed for retrieval, however the intensity of the first beam (506) is reduced to prevent changes in material properties within the recording medium (100).