Abstract:
This invention relates to a continuous process for production of poly(trimethylene terephthalate), wherein gaseous 1,3-propanediol by product resulting from the process is condensed in a condenser, and a portion of the condensed by-product is recycled to the condenser while anther portion is recycled back into the process.
Abstract:
This invention relates to a continuous process for production of poly(trimethylene terephthalate), wherein gaseous 1,3-propanediol by product resulting from the process is condensed in a condenser, and a portion of the condensed by-product is recycled back into the process.
Abstract:
This invention relates to a continuous process for production of poly(trimethylene terephthalate), wherein gaseous 1,3-propanediol by product resulting from the process is condensed in a condenser, and a portion of the condensed by-product is recycled to the condenser while anther portion is recycled back into the process.
Abstract:
This invention relates to a continuous process for production of poly(trimethylene terephthalate), wherein gaseous 1,3-propanediol by product resulting from the process is condensed in a condenser, and a portion of the condensed by-product is recycled back into the process.
Abstract:
This invention relates to a continuous process for production of poly(trimethylene terephthalate), wherein gaseous 1,3-propanediol by-product resulting from the process is condensed in a condenser, the total amount of any trimethylene terephthalate cyclic dimer and poly(trimethylene terephthalate) in the condensed by-product 1,3 propanediol is adjusted, and a portion of the condensed by-product is recycled to the condenser while another portion is recycled back into the process.
Abstract:
The invention discloses a hydrogenation process for removing impurities and controlling acid for use in downstream processing of biochemically-derived 1,3-propanediol. Preferably, the biochemically-derived 1,3-propanediol, before the contacting, has an initial color and, after the contracting, has a color that is lower than the initial color.
Abstract:
A process for purifying 1,3-propanediol from the fermentation broth of a cultured E. coli that has been bioengineered to synthesize 1,3-propanediol from sugar is provided. The basic process entails filtration, ion exchange and distillation of the fermentation broth product stream, preferably including chemical reduction of the product during the distillation procedure. Also provided are highly purified compositions of 1,3-propanediol.
Abstract:
This invention relates to a continuous process for production of poly(trimethylene terephthalate), wherein gaseous 1,3-propanediol by-product resulting from the process is condensed in a condenser, the total amount of any trimethylene terephthalate cyclic dimer and poly(trimethylene terephthalate) in the condensed by-product 1,3 propanediol is adjusted, and a portion of the condensed by-product is recycled to the condenser while another portion is recycled back into the process.
Abstract:
A process for purifying 1,3-propanediol from the fermentation broth of a cultured E. coli that has been bioengineered to synthesize 1,3-propanediol from sugar is provided. The basic process entails filtration, ion exchange and distillation of the fermentation broth product stream, preferably including chemical reduction of the product during the distillation procedure. Also provided are highly purified compositions of 1,3-propanediol.
Abstract:
The invention discloses a hydrogenation process for removing impurities and controlling acid for use in downstream processing of biochemically-derived 1,3-propanediol. Preferably, the biochemically-derived 1,3-propanediol, before the contacting, has an initial color and, after the contracting, has a color that is lower than the initial color.