Abstract:
An exoskeleton includes a control system which incorporates a feedback system used to establish and communicate orthosis operational information to a physical therapist and/or to an exoskeleton user. The feedback system can take various forms, including employing sensors to establish a feedback ready value and communicating the value through one or more light sources which can be in close proximity to joints of the exoskeleton joints.
Abstract:
A powered lower extremity orthotic (100; 310), including a shank link (105; 305) coupled to an artificial foot (108; 301), a knee mechanism (107; 306) connected to the shank link (105; 305) and a thigh link (103; 307), is controlled by based on signals from various orthotic mounted sensors (122, 124, 126, 127) such that the artificial foot (108; 301) follows a predetermined trajectory defined by at least one Cartesian coordinate.
Abstract:
A lower limb orthotic device (100) includes a thigh link (101) connected to a hip link (102) through a hip joint (103). a hip torque generator (106) including a hip actuator (110) and a first mechanical transmission mechanism (111) interposed between the thigh link ( 101) and the hip link (102), a shank link (104) connected to the thigh link (101) through a knee joint ( 105), a knee torque generator ( 107) including a knee actuator (112) and a second mechanical transmission mechanism (113) interposed between the thigh link (101) and the shank link (104), and a controller (108), such as for a common motor (154) and pump (156) connected to the hip and knee torque generators (106, 107), for regulating relative positions of the various components in order to power a user through a natural walking motion, with the first and second mechanical transmission mechanisms (111, 113) aiding in evening out torque over the ranges of motion, while also increasing the range of motion where the torque generators (106, 107) can produce a non-zero torque.
Abstract:
A semi-actuated above knee prosthetic system (100), includes a shank link (105) coupled to an artificial foot (108), a knee mechanism (107) connected to the shank link (105) and a thigh link (103) attached to an above-knee remaining lower limb (110) of an amputee, is operable in two modes controlled by a signal processor (130) linked to various sensors (120,122,124,126,127). In the actuated mode, power is delivered to a torque generator (104) connected to the knee mechanism (107) to move thigh (103) and shank links (105). In the un-actuated mode, a control circuit (204) operates in a non-powered manner with modulated resistance in the knee mechanism (107). Power is delivered through an electric motor (202) connected to a battery source (205) and employed to drive a hydraulic pump (201) as part of an overall hydraulic power unit (200) including the torque generator (104)
Abstract:
A power generating leg, configurable to be coupled to a person's lower limb, comprising a thigh link, a shank link, a knee mechanism, a torque generator, and a power unit. The knee mechanism is connected to said thigh link and said shank link, and configured to allow flexion and extension movements of said thigh link and said shank link relative to each other. The torque generator is configured to generate torque between said shank link and said thigh link. The power unit is coupled to said torque generator, and configured to cause said torque generator to generate torque. When said power unit is in a power regeneration mode, said power unit causes said torque generator to generate a torque that opposes the angular velocity of said thigh link and said shank link relative to each other and said power unit converts a portion of the power associated with the product of said torque and said angular velocity of said shank link and thigh link relative to each other into electrical power to be stored in a storage device.
Abstract:
A lower extremity orthosis is configured to be coupled to across at least one joint of a person for gait assistance and can incorporate knee, thigh, hip and ankle/foot assistive orthotic devices which can be used in various combinations to aid in the rehabilitation and restoration of muscular function in patients with impaired muscular function or control.
Abstract:
A powered orthotic system, such as an exoskeleton, is employed for overground rehabilitation purposes by adapting and adjusting to real-time needs in a rehabilitation situation whereby the system can be initially controlled to perform gait functions for a wearer based on a predetermined level of assistance but the predetermined level of assistance can be varied, based on one or more rehabilitation parameters or specific needs of the wearer undergoing therapy, through the application and adjustment of appropriate variables associated with operation of the system.