一种捷联惯导系统中确定多普勒计程仪测速误差的方法

    公开(公告)号:CN103076026B

    公开(公告)日:2016-07-06

    申请号:CN201310006107.2

    申请日:2013-01-08

    Abstract: 本发明提供了一种捷联惯导系统中确定多普勒计程仪测速误差的方法。该方法通过GPS确定载体的初始位置参数,采集光纤陀螺仪输出和加速度计输出数据,数据处理进行初始对准,确定初始捷联矩阵;然后采集惯性组件测量的载体的角运动和线运动信息,分别采用罗经法和惯导法进行导航解算,其中罗经法解算中引入DVL测量的载体运动速度信息;将两方法解算得到的两组姿态信息做差,进行转换得到两组解算姿态的方位失准角差值;最后将方位失准角差值换算得到DVL测速误差。本发明方法能够在载体航行过程中估算DVL测速误差,将结果补偿给DVL后,提高DVL测速精度,且方法简单,易操作。

    基于强跟踪自适应Kalman滤波的SINSGPS组合导航方法

    公开(公告)号:CN104062672A

    公开(公告)日:2014-09-24

    申请号:CN201310612225.8

    申请日:2013-11-28

    CPC classification number: G01S19/49 G01C21/165

    Abstract: 本发明公开了一种基于强跟踪自适应Kalman滤波的SINSGPS组合导航方法,首先将捷联惯导系统和GPS接收机安装在载体上;对捷联惯导系统预热后采集捷联惯导系统输出的位置信息与GPS输出的位置信息;建立SINS/GPS组合导航系统的状态方程与量测方程;设计强跟踪Kalman滤波器与Sage-Husa自适应滤波器;采用收敛判据对滤波的发散趋势进行判断,设计基于强跟踪自适应Kalman滤波的SINS/GPS组合导航方案。采用本发明能够满足SINS/GPS组合导航系统遇到的高动态应用环境,抑制滤波的发散,进一步提高导航精度。

    一种纬度未知情形下的捷联惯导系统初始姿态确定方法

    公开(公告)号:CN103697911A

    公开(公告)日:2014-04-02

    申请号:CN201310694208.3

    申请日:2013-12-18

    CPC classification number: G01C25/00 G01C21/16

    Abstract: 本发明公开了一种纬度未知情形下的捷联惯导系统初始姿态确定方法,由以下步骤组成:步骤1:启动光纤陀螺捷联惯性导航系统的惯性测量组件,进行充分预热后,利用FPGA连续采集光纤陀螺仪和加速度计的输出数据;步骤2:利用采集到的光纤陀螺仪和加速度计输出数据同时运行两套参数设置不同的罗经对准程序,获取两组载体姿态值;步骤3:利用两套对准程序输出的航向角求取方位失准角稳态误差;步骤4:利用两套程序输出的航向角计算纬度值和东向水平失准角稳态误差;步骤5:利用求得的方位失准角稳态误差和东向水平失准角稳态误差对姿态进行补偿,完成初始对准。本发明的有益效果是在纬度未知情形下也能精准定位。

    一种光纤陀螺随机漂移实时滤波方法

    公开(公告)号:CN103557856A

    公开(公告)日:2014-02-05

    申请号:CN201310508747.3

    申请日:2013-10-25

    CPC classification number: G01C19/64

    Abstract: 本发明公开了一种光纤陀螺随机漂移实时滤波方法,与现有技术相比,本发明在船用捷联航姿系统中,对采集到的光纤陀螺信号进行实时降噪处理:利用第二代小波的提升算法将滑动数据窗中的数据进行指定层数的分解,得到各层的小波系数和最后一层的尺度系数;对分解后的各层小波系数,建立相应的阈值规则,对其进行阈值量化处理;将处理后的小波系数,结合最后一层的尺度系数,逐级重构各层尺度系数,得到降噪处理后的信号;本发明有效提高了光纤陀螺信号实时降噪的处理精度和反应速度,继而抑制了姿态信息误差;在应用过程中,滑动数据窗宽度、小波分解层数等参数的设置较为简便,可根据仿真实验得到的经验值进行设定。

    低成本无人车导航方法
    5.
    发明授权

    公开(公告)号:CN102183260B

    公开(公告)日:2012-10-31

    申请号:CN201110067497.5

    申请日:2011-03-21

    Abstract: 本发明提供的是一种低成本无人车导航方法。将GPS及微惯性捷联测量系统安装于无人车上构成无人车导航系统,在GPS信号可用时,GPS输出的位置信息作为无人车导航系统的位置输出,利用GPS输出的位置信息作为外部辅助信息,估测微惯性捷联测量系统的速度误差,用估测量校正微惯性捷联测量系统的速度输出后作为无人车导航系统的速度输出;在GPS信号不可用时,利用自速度校正技术提供外部辅助信息,估测微惯性捷联测量系统的速度误差和位置误差,用估测量校正微惯性捷联测量系统的速度输出和位置输出后作为无人车导航系统的速度输出和位置输出。本发明的无人车进行导航定位方法能保证无人车导航定位的精度、连续性、可靠性和低成本性。

    一种单轴旋转捷联惯导系统初始航向的确定方法

    公开(公告)号:CN102052921B

    公开(公告)日:2012-08-22

    申请号:CN201010550892.4

    申请日:2010-11-19

    CPC classification number: G01C25/005

    Abstract: 本发明提供的是一种单轴旋转捷联惯导系统初始航向的确定方法。步骤1、对捷联惯性导航系统进行预热准备;步骤2、通过全球定位系统确定载体的初始位置参数;步骤3、初步确定位置1下载体的三个姿态,并记录一分钟内该位置X、Y方向陀螺的输出均值步骤4、在位置2上采集并记录一分钟内X、Y方向陀螺的输出均值步骤5、计算出X、Y方向上的陀螺常值漂移εx、εy;步骤6、计算出捷联惯导系统方位精对准位置;步骤7、利用卡尔曼滤波估计并补偿方位失准角,完成方位精对准。本发明沿用现有的单轴转台,只需控制转台将IMU置于合适的位置进行初始对准,即可高精度地估计出方位失准角,进而确定出初始航向角。

    光纤陀螺捷联惯性测量系统振动误差补偿方法

    公开(公告)号:CN101566483B

    公开(公告)日:2012-03-14

    申请号:CN200910072087.2

    申请日:2009-05-22

    Abstract: 本发明提供的是一种光纤陀螺捷联惯性测量系统振动误差补偿方法。对于光纤陀螺捷联惯性测量系统,进行振动实验采集光纤陀螺捷联惯性测量系统惯性测量元件加速度计和光纤陀螺的输出数据;考虑光纤陀螺以及及速度计的安装误差,将安装误差补偿到陀螺及加速度计的输出;对安装误差补偿后的加速度计输出作功率谱分析,得到振动信号的振动特征;运用Elman神经网络的方法对光纤陀螺捷联惯性测量系统的振动误差输出进行非线性补偿。本发明对于存在环境振动情况,通过运用合理的神经网络模型对振动误差进行补偿,能够有效的减少环境振动对系统精度造成的影响并保持较好的精度。

    消除水下运载体捷联惯导系统杆臂效应误差的对准方法

    公开(公告)号:CN101963513B

    公开(公告)日:2011-11-16

    申请号:CN201010270972.4

    申请日:2010-09-03

    Abstract: 本发明的目的在于提供消除水下运载体捷联惯导系统杆臂效应误差的对准方法。首先连接主、子惯导系统,然后将主惯导系统的初始速度参数、初始位置参数装订至子惯导系统的导航计算机中,接着粗略计算出子惯导系统的初始姿态,完成主、子惯导系统间的一步传递,利用卡尔曼滤波估计失准角,最后对子惯导系统的姿态矩阵进行修正,得到水下运载体准确的初始姿态角,完成系统的初始对准。本发明不仅能够有效地解决杆臂效应误差补偿的问题,还能提高水下运载体捷联惯导系统初始对准的对准精度。

    一种基于单轴转停方案的系泊估漂方法

    公开(公告)号:CN101713666B

    公开(公告)日:2011-09-14

    申请号:CN200910073232.9

    申请日:2009-11-20

    Abstract: 本发明提供的是一种基于单轴转停方案的系泊估漂方法。通过GPS确定载体的初始位置参数;采集光纤陀螺仪输出和加速度计输出的数据并对数据进行处理;IMU采用8个转停次序为一个旋转周期的转位方案;根据IMU转动状态下陀螺仪的输出对捷联矩阵进行实时更新,同时对采集到的IMU旋转状态下的加速度信息进行坐标转换,转换到数学平台坐标系;根据载体动基座误差模型建立载体系泊状态时的分离位置回路的卡尔曼估漂模型;经过卡尔曼滤波后得到的惯性器件常值偏差采用平均滤波方法进行处理,得到相对稳定的估计平均值。载体处于系泊状态时,利用本发明提供的估漂方法,依据卡尔曼滤波技术可以准确地估计出惯性器件的常值偏差。

Patent Agency Ranking