Abstract:
PURPOSE: A GaN substrate, a method for manufacturing the same, a nitride semiconductor device, and a method for manufacturing the same are provided to implement a flat surface by growing an InGaN layer on a first layer. CONSTITUTION: A substrate(14) is made of a GaN single crystal. An intermediate layer(24) is made of AlxGa1-xN and is epitaxially grown on the substrate(0
Abstract translation:目的:提供GaN衬底,其制造方法,氮化物半导体器件及其制造方法,以通过在第一层上生长InGaN层来实现平坦表面。 构成:衬底(14)由GaN单晶制成。 中间层(24)由Al x Ga 1-x N制成,并在衬底上外延生长(0
Abstract:
본 발명은, 표면의 평탄화가 도모된 GaN기판 및 그 제조방법, 및 질화물반도체소자 및 그 제조방법을 제공하는 것을 특징으로 한 것이다. 본 발명에 관한 GaN에피택셜기판(28)은, GaN단결정으로 이루어진 기판(14)과, 기판(14) 위에 에피택셜 성장된, Al x Ga 1 -x N(0<x≤1)으로 이루어진 중간층(24)과, Al x Ga 1 - x N 중간층(24) 위에 에피택셜 성장되어 GaN으로 이루어진 상부층(26)을 구비한다. Al x Ga 1 - x N 중간층(24)에 이용하는 AlGaN은, 오염물질이 부착되어 있는 영역을 포함한 주요면(14a)의 전역에서 성장한다. 그 때문에, Al x Ga 1 - x N 중간층(24)은 기판(14) 위에 정상적으로 성장되어 있으며, 이 성장면(24a)은 평탄하다. 이와 같이 중간층(24)의 성장면(24a)이 평탄하기 때문에, 중간층(24) 위에 에피택셜 성장되는 상부층(26)의 성장면(26a)도 평탄하게 되어 있다.
Abstract:
PURPOSE: A GaN substrate, a method of manufacturing the GaN substrate, a nitride semiconductor device and a method of manufacturing the nitride semiconductor device are provided to improve planarization of the substrate by using AlxGa1-xN intermediate layer. CONSTITUTION: A GaN substrate(28) includes a substrate(14), a first AlxGa1-xN(0
Abstract translation:目的:提供GaN衬底,GaN衬底的制造方法,氮化物半导体器件和制造氮化物半导体器件的方法,以通过使用Al x Ga 1-x N中间层来改善衬底的平坦化。 构成:GaN衬底(28)包括衬底(14),衬底上的第一Al x Ga 1-x N(0
Abstract:
본 발명은, 표면의 평탄화가 도모된 GaN기판 및 그 제조방법, 및 질화물반도체소자 및 그 제조방법을 제공하는 것을 특징으로 한 것이다. 본 발명에 관한 GaN에피택셜기판(28)은, GaN단결정으로 이루어진 기판(14)과, 기판(14) 위에 에피택셜 성장된, Al x Ga 1-x N(0<x≤1)으로 이루어진 중간층(24)과, Al x Ga 1-x N 중간층(24) 위에 에피택셜 성장되어 GaN으로 이루어진 상부층(26)을 구비한다. Al x Ga 1-x N 중간층(24)에 이용하는 AlGaN은, 오염물질이 부착되어 있는 영역을 포함한 표면(14a)의 전역에서 성장한다. 그 때문에, Al x Ga 1-x N 중간층(24)은 기판(14) 위에 정상적으로 성장되어 있으며, 이 성장면(24a)은 평탄하다. 이와 같이 중간층(24)의 성장면(24a)이 평탄하기 때문에, 중간층(24) 위에 에피택셜 성장되는 상부층(26)의 성장면(26a)도 평탄하게 되어 있다.
Abstract:
A gallium nitride wafer (11) has a substantially circular shape. The gallium nitride wafer (11) is provided with a plurality of stripe regions (13), a plurality of single crystal regions (15) and a visible mark (17). Each stripe region (13) exhibits a direction of axis and extends in a direction of a prescribed axis. Each stripe region (13) is sandwiched between the single crystal regions (15). The mark (17) is arranged at least on a front plane (11a) or a rear plane (11b) of the gallium nitride wafer (11), and has visible size and shape. The dislocation density of the stripe region (13) is higher than that of the single crystal region (15), and the crystal orientation of the stripe region (13) is different from that of the single crystal region (15).
Abstract:
A chemical mechanical polishing method of a GaAs wafer is provided to increase a polishing speed in a first chemical mechanical polishing process and to implement a mirror-like surface on the GaAs wafer in a second chemical mechanical polishing process. A chemical mechanical polishing apparatus includes an upper polishing pad(1), an upper polishing fabric(11), a lower polishing pad(2), and a lower polishing fabric(12). The upper polishing fabric is attached on a lower surface of the upper polishing pad. The lower polishing fabric is attached on an upper surface of the lower polishing pad. A GaAs wafer(3) is inserted between the upper and lower polishing fabrics under a certain pressure. A first polishing process is performed by supplying a first composition polishing solution containing a sodium tripolyphosphate of 20 to 31 wt% to the chemical mechanical polishing apparatus. A second polishing process is performed by supplying a second composition polishing solution containing the sodium tripolyphosphate of 13 to 19 wt% to the chemical mechanical polishing apparatus.
Abstract:
A processing-degenerated layer occurs when nitride semiconductor single crystal wafers are polished. Etching must be performed for removing the processing-degenerated layer. However, since nitride semiconductors are chemically inert, no appropriate etchant is available. Although potassium hydroxide and phosphoric acid have been proposed as an etchant for GaN, their power of corroding the surface of Ga is weak. For removing the processing-degenerated layer, dry etching with the use of halogen plasma can be conducted. Even Ga surface can be pared off by halogen plasma. However, the dry etching would cause a new problem of surface contamination by metal particles. Therefore, wet etching is performed by the use of HF+H2O2, H2 SO4+H2O2, HCl+H2O2, HNO 3, etc. having no selectivity, being corrosive and having an oxidation-reduction potential of 1.2 V or higher as an etchant.
Abstract translation:当氮化物半导体单晶晶片被抛光时,发生加工退化层。 必须进行蚀刻以去除加工退化层。 然而,由于氮化物半导体是化学惰性的,因此没有适当的蚀刻剂可用。 尽管已经提出氢氧化钾和磷酸作为GaN的蚀刻剂,但它们腐蚀Ga表面的能力较弱。 为了去除加工退化层,可以进行使用卤素等离子体的干蚀刻。 均匀的Ga表面可以被卤素等离子体去除。 然而,干蚀刻将导致金属颗粒表面污染的新问题。 因此,通过使用不具有腐蚀性且氧化还原电位为1.2V以上的无选择性的HF + H 2 O 2,H 2 SO 4 + H 2 O 2,HCl + H 2 O 2,HNO 3等进行湿式蚀刻。
Abstract:
A nitride semiconductor substrate and a method for manufacturing the same are provided to obtain a nitride base semiconductor thin film having the low potential density and the low cost using an epitaxial growth. A surface roughness of a nitride semiconductor substrate is Rms 5nm to 200nm. The surface roughness of a nitride semiconductor substrate is Rms 50nm to 200nm. The nitride semiconductor substrate having a surface roughness of Rms 5nm to 200nm is obtained by lapping using separated or fixed abrasive grains. The nitride semiconductor substrate having a surface roughness of Rms 5nm to 200nm and a potential density of 10.sup.5cm.sup.-2 to 10.sup.9cm.sup.-2, is obtained by lapping using separated or fixed abrasive grains.