Abstract:
Disclosed is a thin film lithium battery which realizes a high yield by solving various problems caused by generation of pinholes in a solid electrolyte layer. Specifically disclosed is a thin film lithium battery wherein a positive electrode layer (20), a negative electrode layer (50), a solid electrolyte layer (40) arranged between the electrode layers, and a collector (10) electrically connected to one or both of the positive electrode layer (20) and the negative electrode layer (50) are arranged in layers. When the lamination of the layers in this battery is viewed in plan, the positive electrode layer (20) and the negative electrode layer (50) are arranged not to overlap each other. By having such a structure, even when a pinhole is formed in the solid electrolyte layer (40), the electrode layers (20, 50) are prevented from being short-circuited by the pinhole.
Abstract:
본 발명의 전지는, 정극층(20)과, 부극층(50)과, 양 전극층간에서 이온 전도를 행하는 전해질층(40)을 갖는다. 이 전지에 있어서, 정극층(20)과 부극층(50)은 적층되고, 정극층(20)과 부극층(50)과의 사이에 절연층(30)이 개재되어 있다. 이 절연층(30)은, 정극층(20) 및 부극층(50)의 한쪽 보다 면적이 작고, 다른 한쪽 보다 면적이 크게 구성되어 있다. 정극층(20)과 부극층(50)이 전해질층(40)만을 개재하여 대면하는 개소가 없도록 하고 있다. 정극층(20)과 부극층(50)과의 사이에 절연층(30)을 개재시킴으로써, 가령 전해질층(40)에 핀홀이 있더라도, 정부극층 사이의 단락을 억제할 수 있다. 전지, 정극성, 부극성, 전해질층, 절연층, 핀홀, 단락
Abstract:
A coating thickness measurement mechanism and a coating apparatus using the same are provided to minimize deviation of thickness in a length direction by feeding back data on manufacture factors, such as temperature, to a control system. A coating thickness measurement mechanism continuously confirms the thickness of a layer coated on a conductive base material(1) during the coating process. The coating layer thickness measurement mechanism includes a pair of sensing units(4,8) arranged at the front and the rear sides of the base material to measure the electrostatic capacitance value of the coated layer. A tension applied to the base material in the sensing units is greater than the tension applied to the base material.
Abstract:
A battery comprises a positive electrode layer (20), a negative electrode layer (50), and an electrolyte layer (40) for conducting ions between the both electrode layers. In this battery, the positive electrode layer (20) and the negative electrode layer (50) are stacked and an insulating layer (30) is interposed between the positive electrode layer (20) and the negative electrode layer (50). The insulating layer (30) is formed to have an area smaller than that of one of the positive electrode layer (20) and the negative electrode layer (50) and larger than that of the other one. It is so formed that there is no area where the positive electrode layer (20) and the negative electrode layer (50) face each other with only the electrolyte layer (40) interposed between them. The insulating layer (30) interposed between the positive electrode layer (20) and the negative electrode layer (50) prevents a short-circuit from occurring between the positive and negative electrode layers even if a pinhole is present in the electrolyte layer (40).
Abstract:
본 발명은 고체 전해질층의 핀홀의 발생에 수반하는 모든 문제를 해소해서 고수율화를 실현할 수 있는 박막 리튬 전지를 제공한다. 본 발명의 박막 리튬 전지는, 정극층(20)과, 부극층(50)과, 이들 두 극층 사이에 개재되는 고체 전해질층(40)과, 정극층(20) 및 부극층(50)의 각각 또는 한쪽에 전기적으로 접속되는 집전체(10)가 적층된 박막 리튬 전지이다. 이 전지를 상기 각 층의 적층방향으로 평면에서 보았을 경우, 정극층(20)과 부극층(50)은 중첩되지 않는 위치에 배치되어 있다. 이 구성에 의해, 고체 전해질층(40)에 핀홀이 생겨도, 이 핀홀에 의해 두 극층(20, 50) 사이가 단락되는 것을 방지할 수 있는 것을 특징으로 한 것이다.
Abstract:
A feeding device for controlling an elongated base material continuously, a control device thereof, a thin film forming device, and an elongated member are provided to feed the elongated base material at constant speed by giving adequate tensile force to the base material and to improve size accuracy of a longitudinal direction for the base material favorably. A feeding device for controlling an elongated base material includes a base ground supplying the elongated base material(1) continually and controlling the elongated base material physically and chemically at predetermined speed. The base material receives tensile force(T1) of an opposite direction for a feeding direction from a returning direction for the base ground, frictional force(F) from the base ground, and the tensile force(T2) of the feeding direction from the returning direction of the base ground, separately. F is larger than T1, and T1 is larger than T2. Deviation of thickness for the elongated base material at a longitudinal direction for a surface layer formed through whole length of the base material is in a range of ±10% of an average value.