Abstract:
본 발명은 포텐셜 웰 베리어 트랜지스터에 관한 것으로, 보다 자세하게는 넓은 밴드 갭과 좁은 밴드 갭이 형성하는 포텐셜 웰을 갖는 장벽층을 이용한 포텐셜 웰 베리어 트랜지스터에 관한 것이다. 본 발명의 이종접합층 구조를 가진 트랜지스터에 있어서, 기판 및 상기 기판 상에 위치하는 버퍼층; 상기 버퍼층 상에 위치하는 제 1장벽층; 상기 제 1장벽층 상에 위치하는 채널층; 상기 채널층 상에 위치하고, 포텐셜 웰을 갖는 제 2장벽층; 및 상기 제 2장벽층 상에 위치하는 캡층을 포함함에 기술적 특징이 있다. 포텐셜 웰, 이종접합구조, 장벽층, 트랜지스터
Abstract:
본 발명은 멀티칩 모듈(MCM-D) 기판에 구현하는 새로운 구조의 금속-절연체-금속(MIM) 캐패시터로서, 실리콘 기판상에 금속-절연체-금속 캐패시터를 위한 마스크 패턴을 형성하는 마스크 패턴 단계, 상기 기판을 습식 식각하는 식각 단계, 상기 마스크 패턴을 제어하는 단계 및 상기 식각된 영역에 금속층, 절연막 그리고 금속층을 차례대로 형성하는 박막 형성 단계에 의해 제조된다. MIM 캐패시터, 습식 식각, 실리콘 단결정, 역피라미드형 홈
Abstract:
PURPOSE: A high-frequency switching circuit using an enhancement mode transistor is provided to turn on a channel of a power on-state transistor in a VDD which is maximal voltage of a battery in order to operate the transistor in a minimal resistor. CONSTITUTION: A high-frequency switching circuit using an enhancement mode transistor includes a first capacitor(BC1), a capacity through switch element and a capacity shunt switch element. The first capacitor is connected to one end of a high-frequency signal path, and the capacity through switch element is connected between the first capacitor and the other end of the high frequency signal path. One end of the capacity shunt switch element is connected between the first capacitor and the capacity through switch element, and the other end of the capacity shunt switch element is connected between voltage control terminals.
Abstract:
A high frequency transistor structure by a half self-aligned process using a T-type gate and a method for manufacturing the same are provided to sufficiently increase a distance between a gate and a drain while sufficiently reducing the gate and a source and to reduce parasitic capacitance by reducing an upper portion of the T-type gate and the drain. A method for manufacturing a high frequency transistor structure by a half self-aligned process using a T-type gate includes the steps of: forming a passivation layer(220) on a substrate(200) on which the T-type gate; forming a photo resist between a part of an upper surface of the T-type gate and a formation region of a drain(260); removing the passivation layer using the photo resist; depositing a metal layer on the substrate to form a source(250) and the drain; removing the photo resist and the metal layer on the photo resist; and selectively etching the passivation layer. The photo resist has an over hang structure, and a width of the photo resist ranges from 1 to 1000 um.
Abstract:
A T-type gate electrode for an HEMT(High Electron Mobility Transistor) and a manufacturing method thereof are provided to improve cut-off frequency characteristics of the HEMT by forming a lower region of the T-type gate electrode in a few tens of nanometers. First to third insulation layers(310,320,330) are formed on an epitaxial structure layer, which is formed by growing plural crystal layers on a semiconductor substrate. A resist pattern(410) is formed on the third insulation layer. A slant surface(440) is formed on the third insulation layer. A predetermined region of the second insulation layer is exposed. The exposed third insulation layer is removed, a slant surface is formed on the second insulation layer, and a portion of the first insulation layer is removed. The exposed region of the first insulation layer is removed. An electrode material is deposited on an etched region.
Abstract:
A method of forming a multiple gate using a metal lift-off process is provided to reduce a manufacturing time and a manufacturing cost of a semiconductor device by decreasing an inter-gate distance in the multiple gate. A polymer layer is formed on a substrate(300) and the polymer layer is patterned. An isotropy etching process is performed on an exposed substrate. Metal layers(340,350) are formed on the substrate. The polymer layer and the metal layer, which is formed on the polymer layer, are removed. A thickness of the polymer layer lies between 100 and 500 nm. The polymer is a photoresist. The polymer layer is patterned by using a photolithography process or an electron beam lithography process.
Abstract:
본 발명은 2층의 레지스트를 사용하여 T-게이트와 게이트 리세스를 형성하는 방법에 대한 것이다. 특히, 본 발명에 따른 T-게이트 및 게이트 리세스 형성방법은 간단히 비대칭 T-게이트(감마 게이트)를 형성하는 동시에 비대칭 게이트 리세스를 형성할 수 있다. 2층의 레지스트는 기판상의 제1레지스트와 그 제1레지스트상의 제2레지스트로 형성되며, 특히 제2레지스트로서 화학 증폭형 레지스트(chemically amplified resist)를 사용함으로써 본 발명의 목적을 달성할 수 있다. 화학 증폭형 레지스트, T-게이트, 고전자이동도 트렌지스터, 비대칭형 게이트 리세스
Abstract:
본 발명에 의한 고주파 스위치 회로는 DC 블럭킹 커패시터(DC blocking capacitor)를 이용하여 각 트랜지스터를 DC 적으로 분리하여 오프 상태 트랜지스터를 더 deep pinch off시키고, 온 상태 트랜지스터에 최대 전류가 흐르는 바이어스를 제공한다. 또한 증식형(Enhancement mode) 트랜지스터를 사용하여 공핍형(depletion mode) 트랜지스터에 비해 같은 게이트 전압으로 더 deep pinch off시킬 수 있고 고주파 스위치가 큰 Pmax를 갖도록 한다. 고주파 스위치 회로, DC 블럭킹 커패시터, 증식형 트랜지스터
Abstract:
A gate recess and a method for forming a gate are provided to reduce a process cost by not requiring an additional electronic beam lithography process. A first resist layer(110) is formed on a substrate(100). A pattern of a gate foot is formed in the first resist layer. A second resist layer(150) is formed on the first resist layer. The pattern of the gate head is formed in the second resist layer. The substrate is etched. The pattern of the gate foot inclines to a source(130) and forms a gamma gate pattern.
Abstract:
A high frequency transistor structure by a half self-aligned process using a T-type gate and a method for manufacturing the same are provided to sufficiently increase a distance between a gate and a drain while sufficiently reducing the gate and a source and to reduce parasitic capacitance by reducing an upper portion of the T-type gate and the drain. A method for manufacturing a high frequency transistor structure by a half self-aligned process using a T-type gate includes the steps of: forming a passivation layer(220) on a substrate(200) on which the T-type gate; forming a photo resist between a part of an upper surface of the T-type gate and a formation region of a drain(260); removing the passivation layer using the photo resist; depositing a metal layer on the substrate to form a source(250) and the drain; removing the photo resist and the metal layer on the photo resist; and selectively etching the passivation layer. The photo resist has an over hang structure, and a width of the photo resist ranges from 1 to 1000 um.