Abstract:
본 발명은 브래그 격자(Bragg grating)를 이용한 광센서 칩 및 그의 제조 방법에 관한 것으로, 기판과; 상기 기판 상부에 형성된 클래드층과; 상기 클래드층 내부에 개재되어 있는 코어층과; 상기 코어층으로 입사되는 광 중 특정 파장을 중심으로 일정 대역의 광을 반사시키고 나머지 광은 통과시키도록, 상기 코어층에 형성되어 있는 브래그 격자패턴으로 구성된다. 또한, 본 발명은 PLC(Planar Lightwave Circuit) 기술을 이용하여 한 웨이퍼 안에다 수십∼수백개의 광센서칩을 동시에 노광시켜 양산해 낼 수 있으므로, 소자의 저가격화를 수행할 수 있는 효과가 있다. 브래그, 격자, 반사, 센서, 칩
Abstract:
An optical sensor chip using Bragg grating and a method for manufacturing the same are provided to expose the numerous optical sensor chips in one wafer at the same time by using a PLC(Planar Lightwave Circuit) technology. An optical sensor chip using Bragg grating includes a substrate, a clad layer(200), a core layer(250), and a Bragg grating pattern(251). The clad layer is formed on the substrate. The core layer is incorporated in the clad layer. The Bragg grating pattern is formed in the core layer so as to reflect one light beam having a predetermined band and transmit other light beams among light beams incident in the core layer. The substrate is a silicon substrate. The clad layer is a high-density silica film. The core layer is a germanium oxide film. The core layer is divided into plural core layer areas. The Bragg grating pattern is formed in each of the core layer areas. Optical fibers are optically arranged at one side of the core layer.
Abstract:
A modulator is provided to increase a data transfer rate per unit bandwidth while maintaining a final modulated signal in a constant amplitude, by interleaving an output of constant-amplitude orthogonal modulation. A CACB(Constant Amplitude Coded Bi-orthogonal) modulating part(400) receives user data to perform constant amplitude coded bi-orthogonal modulation. An interleaving part(500) combines the outputs of the CACB modulator to make the outputs odd redundancy. A Q^2PSK(Quadrature-Quadrature Amplitude Phase Shift Keying) modulating part(600) modulates the output of the interleaving part with bi-orthogonal phase shift.
Abstract:
본 발명은 광통신용 광학 부품 패키징 방법에 관한 것으로, 광학부품을 패키징시 솔더링 영역을 국부적인 고주파 가열 또는 적외선 파장대의 광을 조사하여 솔더링함으로써, 패키징을 자동화할 수 있고, 가격 경쟁력 및 품질의 균일성을 얻을 수 있으며, 솔더링 영역을 제외한 영역에 대한 열변형을 최소화할 수 있으므로 고신뢰성을 갖는 부품을 패키징할 수 있는 효과가 있다. 더불어, UBM층을 형성한 후 솔더링함으로써, 열팽창계수에 따른 열변형을 최소화할 수 있어, 정렬위치의 틀어짐에 따른 광손실을 줄일 수 있는 효과가 있다. 광학, 부품, 패키징, UBM층, 솔더, 고주파, 적외선
Abstract:
본 발명은 광통신용 광학 부품 패키징 방법에 관한 것으로, 광학부품을 패키징시 솔더링 영역을 국부적인 고주파 가열 또는 적외선 파장대의 광을 조사하여 솔더링함으로써, 패키징을 자동화할 수 있고, 가격 경쟁력 및 품질의 균일성을 얻을 수 있으며, 솔더링 영역을 제외한 영역에 대한 열변형을 최소화할 수 있으므로 고신뢰성을 갖는 부품을 패키징할 수 있는 효과가 있다. 더불어, UBM층을 형성한 후 솔더링함으로써, 열팽창계수에 따른 열변형을 최소화할 수 있어, 정렬위치의 틀어짐에 따른 광손실을 줄일 수 있는 효과가 있다.
Abstract:
PURPOSE: A constant amplitude binary orthogonal modulator/demodulator is provided to reduce the power consumption of a communication system by performing a constant amplitude binary orthogonal modulation process for transmission data. CONSTITUTION: A serial/parallel converter(200) is used for converting serial data to a data bit, a group of data bits, and a plurality of groups of data bits according to a data rate control signal. A constant amplitude encoder(210) is used for generating parity bits of each group by combining the plural groups of data bits. An orthogonal code generator(220) is used for generating different groups of orthogonal codes. A plurality of binary orthogonal modulators(230,240,250,260) are used for selecting one orthogonal code from each group and performing a binary orthogonal modulation process. A parallel adder(270) is used for adding output signals of the plural binary orthogonal modulators in parallel.
Abstract:
PURPOSE: An envelope binary orthogonal modulation and demodulation system is provided to execute envelope binary orthogonal modulation for data so as to transmit the data at a mass data rate and a variable data rate. CONSTITUTION: An envelope binary orthogonal modulator consists of a serial/parallel converter(200), an envelope encoder(210), an orthogonal code generator(220), a plurality of binary orthogonal modulation parts(230,240,250,260), and a parallel combiner(270). The serial/parallel converter(200) converts in-phase or orthogonal phase serial data, separated from a signal splitter, into a data bit(b1), a group of data bits(b0-b2), or many groups of data bits((b0-b2),(b3-b5)(b6-b8)) according to a data rate control signal. The envelope encoder(210) combines many groups of data bits((b0-b2),(b3-b5)(b6-b8)) converted at the serial/parallel converter(200) respectively and generates a plurality of parity bits(r0,r1,r2). The orthogonal code generator(220) generates many groups of orthogonal codes((c0-c3)(c4-c7)(c8-c11)(c12-c15)). The binary orthogonal modulation parts(230,240,250,260) select their respective orthogonal codes among the orthogonal codes((c0-c3)(c4-c7)(c8-c11)(c12-c15)) according to many groups of data bits((b0-b2),(b3-b5)(b6-b8)) and the parity bits(r0,r1,r2) and adjust the codes. The parallel combiner(270) sums up the orthogonal codes, outputted from the binary orthogonal modulation parts(230,240,250,260), in parallel and generates envelope binary orthogonal modulation data.
Abstract:
PURPOSE: An optical communication element package and a method for manufacturing the same are provided to minimize the loss change due to the thermal deformation in response to the asymmetric structure and the loss change in response to the temperature characteristics evaluation during the welding. CONSTITUTION: An optical communication element package includes a pair of collimators(201,202), an external housing(204), a filter(209), an epoxy and a spherical filter holder(206). The spherical filter holder(206) aligns the filter(209) with the pair of collimators(201,202). And, the external housing(204) supports and aligns the spherical filter holder(206).
Abstract:
PURPOSE: An apparatus for separating and uniting optical signals is provided to increase an isolation and reduce an insertion loss of optical signals by improving transmissivity and reflexibility an apparatus for separating and uniting bidirectional optical signals. CONSTITUTION: The first lens(21) is connected with the first optical fiber(11). A dual non-reflective film(211) is coated on the first face of the first lens(21). The second lens(22) is connected with the first lens(21) in a line. A wavelength separating filter(31) is inserted between the first lens(21) and the second lens(22). The first optical fiber grating(61) is connected with the second lens(22). The second optical fiber(12) is connected with the first optical fiber(61). A signal non-reflective film is coated on the first face of the second lens(22). The first and the second lens(21,22) are used for converting incident rays from the first to the third optical fibers(11-13) to parallel light or focusing incident rays from the wavelength separating filter(31).
Abstract:
PURPOSE: A signal processing filter for an optical communication and a method for manufacturing the same are provided to constantly maintain a wavelength transmission property and a reflection property of a signal interference thin film filter allowing to add and divide wavelength signals. CONSTITUTION: In a signal processing filter, a signal interference device is consisted of a plurality of titanium dioxide layers and a plurality of silicon dioxide layers. The titanium dioxide layers are consisted of 15 layers and the silicon dioxide layers are consisted of 14 layers totally. The titanium dioxide layers being 7-th layer and 9-th layer from a substrate have 1/2 thicknesses of those of the different layers. The silicon dioxide layer being 8-th layer from the substrate has 1/1.05 thickness of those of the different layers.