Abstract:
본 발명은 프리캐스트 세그먼트를 조립하여 일체화시키는 조립장치와, 이러한 조립장치에 의해 프리캐스트 세그먼트를 일체화시키는 조립방법, 그리고 이러한 조립장치 및 조립방법에 의해 프리캐스트 세그먼트들이 터널의 길이 방향으로 연결되어 형성되는 터널 라이닝 구조물에 관한 것이다. 본 발명에서는 제1매립체(10), 제2매립체(20) 및 연결봉(30)을 포함하여 구성되는 프리캐스트 세그먼트 조립장치(1)가 구비되며, 제1매립체(10) 및 제2매립체(20)는, 통형 본체(2)와, 단부마감판(3)을 포함하여 구성되고, 상기 단부마감판(3)에는 돌출끼움부재(4)가 구비되어 있고, 각각 서로 이웃하는 프리캐스트 세그먼트(100)의 대향되는 대향 측면에 매립 설치되며; 상기 연결봉(30)은, 양단이 각각 상기 제1매립체(10) 및 상기 제2매립체(20)의 통형 본체(2) 내에 삽입되며, 양단에는 각각 상기 끼움공(31)이 형성되어 있어, 상기 돌출끼움부재(4)가 상기 끼움공(31)에 삽입되어 고정됨으로써, 상기 연결봉(30)의 양단이 각각 상기 제1매립체(10)와 제2매립체(20)를 일체 결합시켜 양측의 프리캐스트 세그먼트(100)들을 연속 결합시키는 조립장치가 제공되며, 더 나아가, 이러한 조립장치를 이용한 조립방법, 그리고 이러한 조립장치 및 조립방법에 의해 구축되는 터널 라이닝 구조물이 제공된다.
Abstract:
PURPOSE: A sealing packer for a rock bolt filler using a foaming material, a sealing method of a rock bolt hole using such a sealing packer, and a constructing method of a rock bolt are provided to prevent a rock bolt from falling due to own weight since when the rock bolt is installed on a installation hole for installing the rock bolt after the hole is formed on the ground, the rock bolt is stably supported. CONSTITUTION: A sealing packer for a rock bolt filler using a foaming material comprises a packer body, a first foaming agent and a second foaming agent. The synthetic-resin coated aluminum foils of the front and rear sides of the packer body are thermally-bonded to form an inner space. The inner space of the packer body is divided into two areas by an inner partition line(22), which is formed by the thermal bonding. The first foaming agent and the second foaming agent are respectively filled in the two areas of the inner space of the packer body. The first and second foaming agents are mixed and form a foaming body.
Abstract:
유한요소법은 초기에 구성된 요소집합체에 시간변화에 따라 경계조건을 설정하고 요소방적식을 풀어 해를 구하는 것이 일반적인데, 본 발명은 물체의 일부가 시간에 따라 제거되는 현상을 유한요소해석 함에 있어서, 그 결과의 정확도를 기하기 위해 시간의 변화에 따라 요소의 제거를 구현하고, 제거된 요소에 의해 바뀌는 경계조건 변화를 고려하는 알고리즘에 관한 것이다. 본 발명은, 방정식 을 사용하여 모델 전체의 변위, 온도 또는 수두분포( )를 초기화시키는 1단계;와 시간 에 대한 경계조건을 보간법으로 계산하는 2단계;와 시간 에 대한 경계조건으로 방정식 을 사용하여 선형해석 또는 방정식 를 사용하여 비선형해석(반복수만큼 해석)하는 3단계;와 상기 해석에 의해 요소에 계산된 시간 에서의 변위, 온도 또는 수두( )를 기준 강도, 온도 또는 변형량( )과 비교하 는 4단계;와 상기 해석에 의해 요소에 계산된 시간 에서의 변위, 온도 또는 수두( )가 기준 강도, 온도 또는 변형량( )보다 큰 경우 요소를 파괴하여 경계를 변화시키는 5단계;와 상기 해석에 의해 요소에 계산된 시간 에서의 변위, 온도 또는 수두( )가 기준 강도, 온도 또는 변형량( )보다 작은 경우 해당 경계를 유지하는 6단계;와 상기 4단계 내지 6단계를 전체요소에 대하여 수행하는 7단계; 및 2단계 내지 7단계를 전체시간까지 수행하는 8단계로 이루어지는 파괴요소를 이용한 경계조건변화 알고리즘을 제공한다. 유한요소법, 파괴요소, 경계조건, 보간법, 유한요소
Abstract:
PURPOSE: A boundary condition change algorithm by a rupture element according to the flow of time is provided to improve accuracy about result interpretation even though the analysis is time-dependent interpretation. CONSTITUTION: A boundary condition change algorithm by a rupture element according to the flow of time is as follows. The displacement of a model, a temperature or distribution is initialized by using an equation. A boundary condition about the time is calculated through an interpolation method. The boundary condition about the time is linearly interpreted by using an equation.
Abstract:
A method for planning the factors of tunnel excavator by using a best mode design model of a tunnel excavator is provided to estimate the excavating performance by deducing the optimal design factors of a rotational place of a tunnel excavator, which is equipped with a disk cutter for a rock bed, according to a rock bed condition. The information for a tunnel excavator and a disk cutter is inputted, and the disk cutter is mounted at a tunnel excavator. A critical pressure depth, an optimal ratio of the pressure depth of the disk cutter, and the interval between cutters are estimated based on the inputted information. The design factors related to the disk cutter is calculated through a database which stores the data collected from a linear cutting experiment and a tunnel excavating filed. The design factor of the tunnel excavator is calculated based on the design factors related to the disk cutter. An excavating speed of the tunnel excavator is calculated according to the calculated design factors of the tunnel excavator.
Abstract:
본 발명에 따르면, 로드헤더(1)에 장착되는 커팅헤드(100) 형상의 설계방법에 있어서, 상기 커팅헤드(100)는 커팅헤드 본체(110) 및 상기 커팅헤드 본체(110)에 관입된 복수의 픽커터(120)를 포함하되, 굴착 단면적 및 암석의 물성을 입력변수로 하여 상기 로드헤더(1)의 전체 동력을 추정하는 제1 단계(S100); 상기 전체 동력을 기초로 하여 상기 로드헤더(1)의 자중을 계산하는 제2 단계(S200); 상기 전체 동력의 범위 이내에서 상기 커팅헤드(100)의 최대 동력을 가정하는 제3 단계(S300); 상기 제3 단계에서 추정된 상기 최대 동력을 기초로 상기 커팅헤드(100)의 폭(a)과 직경(b)을 산출하는 제4 단계(S400); 및 상기 폭(a)과 직경(b)을 기초로 하여, 절삭실험을 통해 상기 픽커터(120)의 원주방향 간격(c)과 수평방향 간격(d)을 결정하는 제5 단계(S500);를 포함하는 것을 특징으로 하는 로드헤더(1)에 장착되는 커팅헤드(100) 형상의 설계방법이 제공된다.