Abstract:
본 발명은 기지재로서 순수한 알루미늄과 결합제로서 Al-Zn, Al-Si, Al-Cu, Al-Ni, Al-Mg 중에서 선택되는 어느 하나 이상인 알루미늄합금을 포함하여 구성되거나 또는 알루미늄합금만으로 구성된 소결체로서, 상기 소결체의 적어도 한쪽 표면에 하나 이상의 만입부가 형성되어 있는 다공성 알루미늄 흡음재를 제공한다. 또한, 본 발명은 기지재로서 순수한 알루미늄 분말과 결합제로서 알루미늄합금 분말을 혼합하고, 혼합된 분말을 적어도 하나 이상의 돌출부가 형성되어 있는 주형 내에 고르게 분산시키면서 적층하고, 하중을 가한 상태에서 진공상태, 불활성 분위기 또는 수소 분위기 하에서 소결하는 단계를 포함하여 구성되며, 소결된 성형체의 적어도 한쪽 표면에는 상기 돌출부와 동일한 형태의 만입부가 형성되어 있는 것을 특징으로 하는 다공성 알루미늄 흡음재의 제조방법을 제공한다.
Abstract:
PURPOSE: A method for fabricating porous aluminum sound-absorbing material is provided to improve noise reduction characteristics and reduce production cost by reducing quantity of aluminum per unit volume required in sintered porous aluminum sheet, and a porous aluminum sound-absorbing material fabricated by the method is provided. CONSTITUTION: The method comprises the steps of mixing pure aluminum powder as a base material with aluminum alloy powder as a binder, stacking the mixed powder as evenly dispersing the mixed powder into a mold on which at least one or more projecting parts are formed, and sintering the mixed powder under vacuum condition, inert gas atmosphere or hydrogen gas atmosphere in the state that a load is applied to the mixed powder in the mold so that an indentation part having the same shape as the projecting parts is formed on at least one side surface of sintered green compact, wherein the aluminum alloy is one or more alloys selected from Al-Zn, Al-Si, Al-Cu, Al-Ni and Al-Mg, wherein content of a metal bonded to aluminum in the aluminum alloy is in the range of 10 to 40 wt.%, wherein the aluminum powder and aluminum alloy powder are formed in a spherical shape, needle shape or filament, wherein cross sectional shape of the projecting parts is circle, polygon or a mixture thereof, wherein the load applied to the mixed powder is in the range of 20 to 80 g/cm¬2, and wherein the sintering is performed in the sintering temperature range of 550 to 660 deg.C for the sintering time range of 10 min to 2 hrs.
Abstract:
PURPOSE: Provided is a method for growing silicon carbide nanorod and nanowire for use as field emission display and electronic device by directly growing nanorod and nanowire on substrates at low temperature by using a single precursor and thermal chemical vapor deposition. CONSTITUTION: Carbon nanorod and nanowire are grown by the following steps of: forming a catalyst layer on a substrate by spray-coating 10-50mol% of suspension solution, composed of at least one of Ni, Fe, Co, Cr, La, Ti, Mo and Au, on the substrate made of silicon, glass or graphite; thermal treating the catalyst layer rapidly to agglomerate catalysts; thermal vapor depositing Si and C-contained single precursor flown into a reaction tube with H2 or Ar carrier gas, wherein the single precursor is at least one of hexamethyldisilane, 1,3-disilabutane, tetramethylsilane, tripropylsilane and methyltrichlorosilane.
Abstract:
본 발명은 몰리브덴, 몰리브덴 합금, 몰리브덴이 피복된 니오비움 또는 몰리브덴이 피복된 니오비움 합금의 모재 표면상의 MoSi 2 -Si 3 N 4 복합피복층 및 그 제조방법에 관한 것으로써, 상기 모재 표면상의 MoSi 2 -Si 3 N 4 복합피복층은 (1) 상기 모재 표면에 질소를 기상증착하여 Mo 2 N 확산층을 형성하고, Mo 2 N 확산층의 표면에 실리콘을 기상증착하여 MoSi 2 -Si 3 N 4 복합피복층을 형성하거나, (2) 상기 모재 표면에 화학증착법에 의하여 실리콘을 기상증착하여 MoSi 2 확산층을 형성하고, MoSi 2 확산층을 고순도 수소 또는 아르곤 분위기하에 열처리하여 Mo 5 Si 3 확산층으로 상변태시키고, Mo 5 Si 3 확산층의 표면에 화학증착법에 의하여 질소를 기상증착하여 Mo 2 N-Si 3 N 4 복합확산층을 형성하고, Mo 2 N-Si 3 N 4 복합확산층의 표면에 실리콘을 기상증착하여 MoSi 2 -Si 3 N 4 복합피복층을 형성함으로써 제조될 수 있다. 상기 방법으로 제조된 MoSi 2 -Si 3 N 4 복합피복층은 등축정의 MoSi 2 결정입계에 Si 3 N 4 입자들이 분포된 조직을 특징으로 하여 (1) 모재의 반복내산화성의 향상, (2) 저온내산화성의 향상, (3) 피복층의 기계적성질의 개선, 즉 열응력에 의한 미세크랙의 전파억제을 기할 수 있다.
Abstract:
PURPOSE: A method and device for recovering nonmagnetic stainless steel fiber and grinding oil from stainless steel scraps simultaneously is provided to prevent environmental pollution by using a dry heating method. CONSTITUTION: A device for recovering nonmagnetic stainless steel fiber and grinding oil from stainless steel scraps is composed of a reaction tube(230) to which the stainless steel scraps are supplied, a heating furnace(240) heating the reaction tube, an automatic feeding unit feeding the scraps to the reaction tube continuously, a cooling unit condensing evaporated materials, a recovery case(270) recovering the condensed materials, and an automatic classifier(280) classifying the stainless steel fiber.
Abstract:
PURPOSE: A MoSi2-Si3N4 composite coating layer capable of improving repeated oxidation resistance and low temperature oxidation resistance of matrix and improving mechanical properties of the coating layer at high temperature and a manufacturing method of the MoSi2-Si3N4 composite coating layer are provided. CONSTITUTION: The MoSi2-Si3N4 composite coating layer is characterized in that it is coated on the surface of a matrix formed of molybdenum, molybdenum alloy, molybdenum coated niobium or molybdenum coated niobium alloy, and it has a structure in which Si3N4 grains are distributed on equiaxed MoSiO2 grain boundaries. The manufacturing method of MoSi2-Si3N4 composite coating layer coated on the surface of a matrix of molybdenum, molybdenum alloy, molybdenum coated niobium or molybdenum coated niobium alloy comprises the steps of forming Mo2N diffusion layer by vapor depositing nitrogen on the surface of the matrix; and forming a MoSi2-Si3N4 composite coating layer by vapor depositing silicon on the surface of the Mo2N diffusion layer, wherein the nitrogen vapor deposition in the step of forming Mo2N diffusion layer on the surface of the matrix is a chemical vapor deposition using nitrogen (N2) or ammonia (NH3), wherein the silicon vapor deposition in the step of forming a MoSi2-Si3N4 composite coating layer on the surface of the Mo2N diffusion layer is a chemical vapor deposition using SiCl4, SiH2Cl2, SiH3Cl or SiH4, and wherein the silicon vapor deposition in the step of forming a MoSi2-Si3N4 composite coating layer on the surface of the Mo2N diffusion layer is a pack siliconizing method using pack siliconizing powder having a composition comprising 1 to 70 wt.% of Si, 1 to 10 wt.% of NaF and 20 to 98 wt.% of Al2O3.
Abstract translation:目的:提供能够提高基体的重复抗氧化性和低温抗氧化性,提高涂层在高温下的机械性能的MoSi2-Si3N4复合涂层以及MoSi2-Si3N4复合涂层的制造方法。 构成:MoSi2-Si3N4复合涂层的特征在于其涂覆在由钼,钼合金,涂有钼的铌或钼涂覆的铌合金形成的基体的表面上,并且其具有其中分布有Si 3 N 4晶粒的结构 等轴MoSiO2晶界。 涂覆在钼,钼合金,镀钼铌或钼涂层铌合金基体表面上的MoSi2-Si3N4复合涂层的制造方法包括通过在基体表面上气相沉积氮气形成Mo2N扩散层的步骤; 并通过在Mo2N扩散层的表面上气相沉积硅形成MoSi2-Si3N4复合涂层,其中在基体表面形成Mo2N扩散层的步骤中的氮气汽相沉积是使用氮气(N 2 )或氨(NH 3),其中在Mo2N扩散层的表面上形成MoSi 2 -Si 3 N 4复合涂层的步骤中的硅气相沉积是使用SiCl 4,SiH 2 Cl 2,SiH 3 Cl或SiH 4的化学气相沉积,其中硅 在Mo2N扩散层的表面上形成MoSi2-Si3N4复合涂层的步骤中的气相沉积是使用包含1-70重量%的Si,1-10重量%的组合物的组合硅化粉末的包装硅化法, 的NaF和20至98重量%的Al 2 O 3。
Abstract:
PURPOSE: A method for preparing porous aluminum material using an organic binder is provided which has a high handling strength, a uniform pore distribution and a high porosity of 70% or more despite of a relatively simple process, and inexpensive manufacturing cost and simple process by not using aluminum sintering method. CONSTITUTION: The method comprises the steps of uniformly putting one material selected from needle shaped aluminum powder and aluminum monofilament in a desirably shaped frame; wetting the needle shaped aluminum powder or aluminum monofilament by pouring an organic binder solution into the frame; removing the excessive organic binder solution; and drying the material as applying a certain pressure to the aluminum powder or aluminum monofilament on the surface of which an organic binder is coated.
Abstract:
본 발명은 기상증착법을 이용한 산화아연 나노로드 및 나노와이어의 제조방법에 관한 것으로, 저온에서 소자로 사용될 기판에 손쉽게 산화아연 나노로드 및 나노와이어를 성장시킴으로써 기존의 고온 공정을 대폭 개선시켜 단순한 반응으로서 손쉽게 고품질의 균일한 길이의 나노로드 및 나노와이어를 성장시킬 수 있다. 또한 성장 기판을 규소, 유리, 석영, 알루미나 등으로 다양화시킴으로써 성장된 나노로드를 다양한 목적에 맞게 사용할 수 있다. 산화아연 나노로드, 산화아연 나노와이어, 기상증착
Abstract:
PURPOSE: A method and device for recovering nonmagnetic stainless steel fiber and grinding oil from stainless steel scraps simultaneously is provided to prevent environmental pollution by using a dry heating method. CONSTITUTION: A device for recovering nonmagnetic stainless steel fiber and grinding oil from stainless steel scraps is composed of a reaction tube(230) to which the stainless steel scraps are supplied, a heating furnace(240) heating the reaction tube, an automatic feeding unit feeding the scraps to the reaction tube continuously, a cooling unit condensing evaporated materials, a recovery case(270) recovering the condensed materials, and an automatic classifier(280) classifying the stainless steel fiber.