Abstract:
본 발명은 소수의 저선량 컴퓨터 단층촬영 영상을 이용한 양전자 단층촬영 영상의 움직임 보상 및 움직임 상태별 감쇠 보정 방법에 관한 것이다. 본 발명의 방법은 호흡별 PET 데이터를 획득하는 단계와, 적어도 2 이상의 다른 호흡에서 CT 영상을 획득하고, 이를 이용하여 가상의 4D CT 영상을 생성하는 단계와, 4D CT 영상과 호흡별 PET 데이터를 매칭하여, 호흡별로 정확하게 대응되는 3D CT 영상들을 선택하는 단계, 선택된 결과를 이용하여, 호흡별 PET 데이터간의 호흡 움직임 변위 필드 정보를 추출하는 단계, 선택된 CT 영상들을 이용하여 호흡별 PET 데이터에 호흡별 감쇠 및 산란 보정을 수행하는 단계, 보정된 호흡별 PET 데이터들과 추출된 호흡 움직임 변위 필드 정보들을 이용하여, 호흡 보상 및 재구성을 수행하는 단계를 구비한다.
Abstract:
움직이는 대상체를 CT 촬영하여 제1 시점에 대응되는 제1 각도 구간 및 제2 시점에 대응되며 상기 제1 각도 구간과 마주보는 제2 각도 구간 각각에서 획득된 데이터를 이용하여 부분 영상인 제1 영상 및 제2 영상을 획득하고, 상기 제1 영상 및 상기 제2 영상을 이용하여 상기 대상체의 움직임 량을 나타내는 제1 정보를 획득하는 데이터 획득부, 및 상기 제1 정보에 근거하여, 목표 시점에서의 상기 대상체를 나타내는 목표 영상을 복원하는 영상 복원부를 포함하는 컴퓨터 단층 촬영 장치가 개시된다.
Abstract:
The present invention relates to a method for motion compensation and state-of-motion specific attenuation correction of positron tomography images by using a small number of low-radiation-dose computer tomography images. The method of the present invention comprises the steps of: acquiring respiration-specific PET data; acquiring CT images from at least two different respirations, and using the acquired images to generate a virtual 4D CT image; matching the 4D CT image and the respiration-specific PET data, and selecting 3D CT images accurately corresponding to specific respirations; using the selected results to extract respiration motion displacement field information between respiration-specific PET data; using the selected CT images to subject the respiration-specific PET data to respiration-specific attenuation and scattering correction; and using the corrected respiration-specific PET data items and the extracted respiration motion displacement field information items to carry out respiration compensation and reconstruction.
Abstract:
PURPOSE: A method and apparatus for processing OSEM in parallel based on GPU are provided to reduce operation time by integrally performing preprocesses for image reconstruction. CONSTITUTION: A preprocessor(110) outputs gamma-ray emission sinogram based on a preprocessing result. A constant table declaring unit(120) declares a constant table including one or more information of a recovery object. An image reconstruction integration estimating unit(130) outputs the final reconstruction image by performing the maximum probability algorithm. [Reference numerals] (100) OSEM parallel processing device; (110) Preprocessor; (120) Constant table declaring unit; (130) Image reconstruction integration estimating unit
Abstract:
본 발명은 양전자 방출 단층 촬영(PET) 영상에서 콘-빔(cone-beam) 기반의 반응선(LOR) 재구성을 이용한 영상 기반 초고해상도(super-resolution) 기법, 즉 콘-빔 기반 반응선 재구성을 이용한 초고해상도 PET 영상 재구성 장치 및 그 방법을 제공하고자 한다. 이를 위하여, 본 발명은, 양전자 방출 단층 촬영(PET)의 영상 재구성 장치에 있어서, PET 시스템의 각 위치에 따른 각각의 PSF 커널을 생성하여 블러(Blur)를 모델링하는 블러 모델링부; 상기 PET 시스템의 워블링에 의한 각 위치에 따른 각각의 반응선 및 사이노그램을 획득하는 반응선 획득부; 상기 반응선 획득부에서 획득한 반응선 기반 사이노그램을 콘-빔 형태의 사이노그램 포맷으로 변환하는 콘-빔 사이노그램 변환부; 상기 콘-빔 사이노그램 변환부에서 콘-빔 형태로 포맷 변환한 사이노그램을 모델링하는 사이노그램 모델링부; 및 상기 사이노그램 모델링부에서 모델링한 사이노그램을 이용하여 고해상도 영상을 도출하는 고해상도 영상 도출부를 포함한다.
Abstract:
The present invention provides a four-dimensional fusion display technique (a system and a method) of a motion compensated PET image with a CT and MR image. To achieve this, the present invention provides a four-dimensional fusion display technique (a system and a method) of a motion compensated PET image with a CT and MR image including an overall framework for the fused display and generation of a four-dimensional PET-CT-MR image.
Abstract:
움직이는 대상체를 단층 촬영하여 제1 시점에 대응되는 제1 각도 구간 및 제2 시점에 대응되며 상기 제1 각도 구간과 마주보는 제2 각도 구간 각각에서 획득된 데이터를 이용하여 부분 영상인 제1 영상 및 제2 영상을 획득하고, 상기 제1 영상 및 상기 제2 영상을 이용하여 상기 대상체의 움직임 량을 나타내는 제1 정보를 획득하는 데이터 획득부, 및 상기 제1 정보에 근거하여, 목표 시점에서의 상기 대상체를 나타내는 목표 영상을 복원하는 영상 복원부를 포함하는 단층 촬영 장치가 개시된다.
Abstract:
본 발명은 양전자 방출 단층 촬영(PET) 영상에서 콘-빔(cone-beam) 기반의 반응선(LOR) 재구성을 이용한 영상 기반 초고해상도(super-resolution) 기법, 즉 콘-빔 기반 반응선 재구성을 이용한 초고해상도 PET 영상 재구성 장치 및 그 방법을 제공하고자 한다. 이를 위하여, 본 발명은, 양전자 방출 단층 촬영(PET)의 영상 재구성 장치에 있어서, PET 시스템의 각 위치에 따른 각각의 PSF 커널을 생성하여 블러(Blur)를 모델링하는 블러 모델링부; 상기 PET 시스템의 워블링에 의한 각 위치에 따른 각각의 반응선 및 사이노그램을 획득하는 반응선 획득부; 상기 반응선 획득부에서 획득한 반응선 기반 사이노그램을 콘-빔 형태의 사이노그램 포맷으로 변환하는 콘-빔 사이노그램 변환부; 상기 콘-빔 사이노그램 변환부에서 콘-빔 형태로 포맷 변환한 사이노그램을 모델링하는 사이노그램 모델링부; 및 상기 사이노그램 모델링부에서 모델링한 사이노그램을 이용하여 고해상도 영상을 도출하는 고해상도 영상 도출부를 포함한다.
Abstract:
본 발명은 영상 재구성에 관한 것으로서, 보다 구체적으로는 고해상도 양전자 방출 단층 촬영에서 병렬 처리를 위해 영상을 재구성하는 방법 및 장치에 관한 것이다. 일 실시예에 따르면, 영상을 재구성하는 방법은 측정 대상체에 조사된 방사선에 응답하여 검출기들로부터 검출된 반응선((Line-Of-Response; LOR)들을 콘 빔(cone beam) 형태의 여현 곡선 포맷(sinogram format)으로 변환하는 단계; 상기 변환된 반응선들을 기초로 역투영(back projection)를 수행하는 단계; 및 상기 역투영의 수행 결과를 이용하여 영상을 재구성하는 단계를 포함한다.
Abstract:
PURPOSE: A method and an apparatus for parallel NMI-based 3D non-rigid image registration on hybrid cores simultaneously using CPU and GPU are provided to properly distribute computations necessary for non-rigid image registration to the CPU and the GPU and to minimize data transmission and reception between the CPU and the GPU, thereby rapidly performing the non-rigid matching of a three-dimensional image. CONSTITUTION: A graphic processing unit (GPU) (310) locally transforms a source image by B-spline free form deformation (FFD) based on a transformation function. A central processing unit (CPU) (330) produces the normalized mutual information (NMI) of the transformed source image and a target image by using a two-dimensional joining histogram calculated based on a brightness value of the source image and the target image. The CPU updates the transformation function by using a cost function based on the NMI of the source image and the target image. A matching image generator of the CPU reflects variables produced through the optimization process to the source image to generate an image matched to the target image.