Abstract:
A recombinant microorganism having the productivity of coenzyme Q10 is provided to improve the productivity of coenzyme Q10 by limiting the synthesis of coenzyme Q10 which is a by-product. A recombinant microorganism having a coenzyme Q10 productivity has a gene (ddsA) which codes a decaprenyl diphosphate synthetase (DPS) of the sequence number 1[SEQ ID NO:1]. The decaprenyl diphosphate synthetase (DPS) is an amino acid of the sequence number 2. The gene (ddsA) is derived from glucobacter oxidans 621H. The microorganism is Escherichia coli. The coenzyme Q10 is produced by culturing the recombinant microorganism and collect the coenzyme Q10 from cultured microorganism. The gene (mddsA) is mutated in a gene of the sequence number 1 coding a glucobacter oxidans 621H derived decaprenyl diphosphate synthase.
Abstract translation:提供具有辅酶Q10生产能力的重组微生物,通过限制副产物辅酶Q10的合成来提高辅酶Q10的生产率。 具有辅酶Q10生产力的重组微生物具有编码序列号1 [SEQ ID NO:1]的十聚泼尼酯二磷酸合成酶(DPS)的基因(ddsA)。 十聚丙二酰二磷酸合成酶(DPS)是序列号2的氨基酸。该基因(ddsA)源自氧化葡萄糖异烟肼621H。 微生物是大肠杆菌。 通过培养重组微生物并从培养的微生物中收集辅酶Q10产生辅酶Q10。 基因(mddsA)在序列号1的基因中突变,编码葡萄糖异烟肼621H衍生的癸酰基二磷酸合成酶。
Abstract:
본 발명은 대사흐름 분석을 이용한 유용물질 생성 생물의 개량방법에 관한 것으로, 보다 구체적으로는, 유용물질 생산을 위한 대상생물의 대사회로 모델에서, 유용물질의 이론적 최대수율인 최대값과, 발효데이터의 적용 또는 미적용 조건에서성장관련 대사흐름의 값이 최대일 때 유용물질의 생산관련 대사흐름의 최적값을 구하고, 그 최적값과 최대값 사이의 구간에서 대사흐름값의 절대값이 증가하는 대사흐름 및 그 대사흐름에 관련되는 유전자를 선별하고, 이를 도입 및/또는 증폭함으로써 유용물질 생성 생물을 개량하는 방법에 관한 것이다. 본 발명에 따르면 게놈 수준의 대사회로모델이 구축된 유용물질 생산을 위한 대상 생물에서, 생산관련 대사흐름의 최적값과 최대값 사이의 구간에서 증폭대상 대사흐름 및 그 대사흐름에 관여하는 유전자를 선별하고 이를 도입 및/또는 증폭함으로써 유용물질의 생산성을 효과적으로 향상시킬 수 있다. 대사산물, 유전자 증폭, 대사흐름분석, FSEOF 알고리즘
Abstract:
A method for improving the productivity of a useful material in a living organism is provided to effectively improve the productivity of the useful material by selecting a gene involving with metabolic pathway between an optimum value and a maximum value of the production-related metabolic pathway from the subject living organism and then introducing it thereinto or amplifying it. The method for screening a gene to be amplified for improving the productivity of a useful material comprises the steps of: (a) after selecting a living organism(except human) which is a subject to produce an object useful material, constructing a metabolic pathway model of the selected living organism; (b) obtaining a maximum value which is a theoretical maximum yield related to the production of the useful material in the constructed metabolic pathway and an optimum value of the production-related metabolic flux of the useful material when the value of the growth related metabolic flux is maximum under the application or the non-application of fermentation data; (c) performing an FSEOF(flux scanning based on enforced objective flux) algorithm between the optimum value and the maximum value of the metabolic path obtained from the step(b) to make out a profile of total metabolic flux of the metabolic pathway; (d) if the maximum among the relative values of the total metabolic flux values in the profile is larger than the optimum value, selecting a gene involving with metabolic flux as a first gene to be amplified; and (e) determining a gene involving with the metabolic flux showing the simple increase or the simple decrease from the gene selected from the step(d) as a final gene to be amplified. To improve a living organism producing a useful material, the final gene obtained from the step(e) is introduced to a subject living organism or the gene is amplified in the subject living organism.
Abstract:
PURPOSE: A recombinant microorganism with butanol potential and a method for producing butanol using the same are provided to modify strain by metabolism manipulation. CONSTITUTION: A recombinant microorganism with butane potential is prepared by introducing genes to a microorganism with 2-ketoisovalerate potential. The genes are: a gene encoding an enzyme which converts 2-ketoisovalerate to isobutyryl-CoA; a gene encoding an enzyme which converts isobutyryl-CoA to butyryl-CoA; a gene encoding an enzyme which converts butyryl-CoA to butyraldehyde; and a gene encoding an enzyme which converts butyraldehyde to butanol. The microorganism with 2-ketoisovalerate potential is bacteria, yeast or fungi such as Corynebacterium, Brevibacterium or E.coli.