Abstract:
The present invention provides a mobile communication system based on cooperative communication that prevents performance degradation when there is a time difference between a point of time when an MCS level is measured between a relay and a terminal and a point of time when an AMC is applied based thereon. The mobile communication system based on cooperative communication according to the present invention includes a base station, a relay, and a terminal. The base station determines map information between the relay and the terminal based on channel information received from the terminal through the relay. The received channel information includes information with respect to an MCS level. The base station delivers the information with respect to the raised MCS level to the relay when a rise in the MCS level is required. In other words, the base station can control the MCS level by delivering an MCS level control signal to the relay. In order to prevent data loss that may occur when the MCS level is raised, the base station delivers the same data as the relay to the terminal during the period of time when the MCS level is changed and thus a macrodiversity gain can be obtained. [Reference numerals] (100) Base station; (200) Relay; (300) Terminal; (AA,CC) Cooperative communication data, MCS control signal; (BB,DD) Channel information; (EE) Cooperative communication data
Abstract:
A human body communication system using a limited pass band and a method thereof are provided to perform stably a human body communication function by minimizing interference between users and minimizing an influence of interference induced from electronic devices. A human body communication system includes a human body MAC(Medium Access Control) processing unit(31), a human body communication physical layer modem(32), a human body IF(Intermediate Frequency) processing unit(33), a signal electrode(34), and a grounding electrode(35). The human body MAC processing unit transfers transmitting data and data information to a transmission part(321) within the human body communication physical layer modem. The human body MAC processing unit receives and processes the data received by a reception part(322) and the data information.
Abstract:
A human body communication system for fast data transmission is provided to reduce inter-user interference by limiting a frequency band for signals, which is able to be supplied to the human body, and to increase a data rate by obtaining the maximum gain within the limited frequency band. A transmitter(10) in a human body communication system comprises a source coder(100), a CRC(Cyclic Redundancy Check) coder(101), a channel encoder(102), an interleaver(103), a mapper(104), a spreader(105), and a pulse shaper/IQ modulator(106). If the source coder(100) codes source information into digital Tx data, the CRC coder(101) inserts a CRC code in the coded Tx data. The channel encoder(102), selectively supporting a HARQ function, executes channel encoding for the output of the CRC coder(101). The interleaver(103) performs block interleaving so as to change a burst error into a random error. The mapper(104), or a constellation mapper, symbolizes the Tx data outputted from the interleaver(103). The spreader(105) executes band spreading for the symbolized Tx data using a spreading code, of which the code length is fixed according to a data rate and a limited frequency range. The pulse shaper/IQ modulator(106) creates a baseband signal, which has a limited frequency range so that the human body can maintain waveguide characteristics, for the Tx data outputted from the spreader(105) and executes digital orthogonal modulation for the created baseband signal.
Abstract:
A method for estimating a blind channel using a guard interval of a signal in an OFDM system is provided to improve the efficiency of a lost frequency band through a pilot. A method for estimating a blind channel using a guard interval of a signal in an OFDM system includes the steps of: generating an i-th symbol block having N carriers; forming an OFDM symbol block by performing IFFT(Inverse Fast Fourier Transform) for the i-th symbol block; adding a guard interval sample to a front part of the i-th symbol block, and forming at least one OFDM symbol block; and modeling the formed OFDM symbol into a channel limitation impulse response filter and a noise, and estimating the channel impulse response as a signal which is received through the channel.
Abstract:
1. 청구범위에 기재된 발명이 속한 기술분야 본 발명은 고속 하다마드 변환을 선택적으로 수행하는 고속 푸리에 변환 장치 및 그를 이용한 CCK 변/복조 장치에 관한 것임. 2. 발명이 해결하려고 하는 기술적 과제 본 발명은 통신 시스템의 송수신기에서 고속 변환 처리를 하고 심볼을 검출하기 위하여, FFT 장치를 이용하여 FHT와 CCK 변/복조를 선택적으로 수행할 수 있는, FHT를 선택적으로 수행하는 FFT 장치 및 그를 이용한 CCK 변/복조 장치를 제공하는데 그 목적이 있음. 3. 발명의 해결방법의 요지 본 발명은, 고속 푸리에 변환(FFT) 장치에 있어서, 제1 다중화수단의 출력신호를 일시 저장한 후 출력하는 저장수단; 상기 저장수단의 출력신호에 입력신호를 가산하여 출력하기 위한 가산수단; 상기 저장수단의 출력신호에서 상기 입력신호를 감산하여 출력하기 위한 감산수단; 상기 감산수단의 출력신호에 위상 계수를 곱해서 출력하기 위한 승산수단; 상기 승산수단의 출력신호와 상기 입력신호 중 하나를 선택 출력하기 위한 상기 제1 다중화수단; 및 상기 가산수단의 출력신호와 상기 저장수단의 출력신호 중 하나를 선택 출력하기 위한 제2 다중화수단을 포함하는 신호처리수단을 길이 2 N (N은 양의 정수임)의 코드에 따라 N개 직렬 구성하여, 두 번째 신호처리수단부터 이전 신호처리수단의 제2 다중화수단의 출력신호를 상기 입력신호로 하며, N번째 신호처리수단에서 상기 저장수단은 2 N-1 로 직렬 구성되는 것을 특징으로 한다. 4. 발명의 중요한 용도 본 발명은 통신 시스템의 송수신기 등에 이용됨. 고속 푸리에 변환(FFT), 고속 하다마드 변환(FHT), FWT, CCK, WLAN 802.11g, WLAN 802.11a, WLAN 802.11b
Abstract:
a receive processing unit(3) inputted with packet/slot ring from a ring; a sequencing buffering unit(4) sequencing the packets inputted from the receive processing unit(3); a receive queing unit(5) storing the sequenced message for a while in order to send by the sequencing buffering unit(4) to a host; a relay buffering unit(6) relaying the packet from the receive processing unit(3) and having a relay period; a transmit queing unit(10) storing the message to transmit from the host to the ring and having a transmitting period; and a transmit processing unit(9) transmitting the packet from the receive processing unit(3), the packet in the relay buffering unit(6) and the message in the transmit queing unit(10) to the ring.