Abstract:
PURPOSE: A resource allocation method of an E-node B and an apparatus thereof in a multiple user MIMO-OFDMA system is provided to increase transmission efficiency by properly allocating a resource in a channel environment. CONSTITUTION: An E-node B allocates UEs(User Equipments) to each sub carrier in one or more types(400). The E-node B calculates transmission power based on information related to a space path(402). The E-node B stores sum of data rate if the calculated transmission power is the maximum transmission power(406). The E-node B selects total sum in a resource assignment algorithm(409).
Abstract:
A repeater in a bidirectional transfer relay network according to one embodiment of the present invention includes a repeater reception antenna which simultaneously receives a signal from two terminals which want to transmit/receive a signal with each other, a repeater control part which deletes a loop interference signal based on incomplete channel information in a signal received from the repeater reception antenna, and a repeater transmission/reception antenna which transmits an amplified signal to the two terminals.
Abstract:
PURPOSE: A method of allocating resources for cooperative diversity is provided to guarantee QoS(Quality of Service) of a fixed level for each user while improving a data transmission rate of the entire system. CONSTITUTION: Channel conditions about each source station are obtained(S610). One or more subcarriers are exclusively allocated to each source station based on the channel conditions. A relay station about each source station is selected(S620). Cooperative diversity is performed using the same subcarrier as a source station to which the relay station corresponds. The subcarrier is assigned to satisfy a minimum data rate necessary for each source station for service quality satisfaction of a user.
Abstract:
본 발명은 데이타 배열위치가 상이한 두 버스 사이의 마스터측 전송제어장치에 관한 것으로서, 프로세서에서 구동된 제어신호들을 버스의 사용권을 얻기 전에 VME64 버스용 제어신호로 미리 변환하기 위한 신호변환기(13)와, 상기 변환된 제어신호들을 이용하여 적당한 시점에 적당한 위치의 버퍼를 적당한 방향으로 선택적으로 구동하는 제어신호를 발생하는 전송제어기(14)와, 전송제어기에서 발생한 제어신호를 이용하여 데이타를 데이타 버스에 직접 구동하기 위한 양방향 데이타 버퍼(8, 9, 10)와, VME64 버스(17)에 있는 특정자원을 지정하여 억세스하기 위한 어드레스 버퍼(11)로 구성되고, 프로세서 제어신호를 VME64 버스쪽의 제어신호들로 변환하기 위한 제2 디코더(20)와, 데이타 전송을 위한 신호들의 타이밍을 VME64 버스규격에 맞추면서 제어신호의 변 시간으로 지연이 발생하지 않게하고, 시간차 구동을 실현하기 위한 전송시점제어기(18) 및 제1디코더(19)와, 상기 버퍼구동신호를 발생하기 위한 제3 디코더(21)와, 전송완료 신호를 구동하여 통신제어기(7)에서 보내온 안정된 데이타를 시스템 제어기의 프로세서가 받도록 하기 위한 전송완료 지연로직(22)으로 구성되어 인텔계열의 프로세서를 사용하는 시스템으로서 로우컬버스와 VME64 버스 사이의 데이타 전송 프로토콜의 차이를 극복하고, 정확한 데이타 전송을 실현할 수 있다.
Abstract:
a signal converter(8) for generating firsttr* and scndtr* signals which indicate a number of transmissions if a data is larger than port sizes or does not aligned to a port size width when accessing to 4 byte or 2 byte port communication controller; a state controller(9) for controlling transmitting time using dtack*, berr*, vmbreq*, and vmbgr* signals; a decoder for generating a transmission ending signal(ldtack*) and an error signal(lberr*) using Tout[3:0 (transmitting starting time control signal), vmiack*, be*[7:0 , and r/w signals, and driving buffer in a certain direction; and buffers for data transmission.
Abstract:
The controller includes a data transmission path consisting of bidirectional data buffers(8,9,10) and address buffer(11), and address counters(12,13) and counter address buffers(14,15), a third decoder(28) for generating signals for controlling the buffers, and a second decoder(23) for generating signals for controlling the effective time point of data reading and writing, determining the driving point of the bidirectional data buffers(14,15), latching the initial address, increasing the address, driving clock input of counters(24,26), and driving buffers(25,27) of the address counters(24,26) when an address driving is required.
Abstract:
The transmission controller includes a second decoder(20) for converting a processor control signal into a control signal of VME64 bus side, a transmission time point controller(18) and first decoder(19) for performing time difference driving, a third decoder(21) for generating a buffer driving signal to selectively latch-enable buffers(8,9,10), and a transmission completion delay(22) for driving a transmission completion signal when a predetermined period of time passes after transmission data is latched by the buffers(8,9,10), to allow the processor of a system controller(5) to receive stable data transmitted from a communication controller(7).