Abstract:
PURPOSE: A block copolymer is provided to have excellent battery performance even under low humidify condition when uses as a fuel cell electrolyte membrane, to have excellent mechanical, chemical and thermal stability, and to improve adhesion with a catalyst layer. CONSTITUTION: A block copolymer comprises a repeating unit indicated in chemical formula 1. In chemical formula 1, Y is a single bond, -S-, -O- or -S(=O)2-, Z is a cation exchange group or a metal salt group selected from a sulfonic acid group, a phosphoric acid, a carboxylic acid, a sulfoneimide, and C1-10 alkylsulfonic acid, each of Ar1 and Ar2 is a divalent or trivalent C5-24 arylene group or a divalent or trivalent C5-24 heteroarylene, Ar3 is selected from C6-24 arylene group or C2-10 alkylene group which has a two or more fluorine substituent, each of A and B is an integer from 3-400, and z is an integer from 1-4.
Abstract:
PURPOSE: A sulfonated polyphenylene sulfide sulfone nitrile provides a polymer electrolyte membrane with high conductivity, dimensional stability, and adhesion with a catalyst layer. CONSTITUTION: A sulfonated polyphenylene sulfide sulfone nitrile is one represented by chemical formula 1-5. In the chemical formulas, n is the content of monomers including a sulfone group and represents a sulfonation degree. A polymer electrolyte membrane is formed by coupling terminals of the sulfonated polyphenylene sulfide sulfone nitrile to each other. A membrane-electrode assembly includes an anode and a cathode facing each other and the polymer electrolyte membrane between the anode and the cathode.
Abstract:
PURPOSE: A manufacturing method of an electrode for a fuel cell is provided to continuously maintain a catalyst layer and a porous structure for operation of a fuel cell, to be able to manufacture a pore structure with various sizes and distributions, and to facilitate control of the catalyst layer and the porous structure. CONSTITUTION: A manufacturing method of a Catalyst layer-combined electrode for a polymer electrolyte membrane fuel cell comprises: a step of providing plate-like porous metal foam(2,2a,2b) or a metal aerogel having a porous structure of nanometer or micron size; a step of manufacturing a catalyst layer-integrated electrode by fixing a catalyst to the metal foam or metal aerogel. The manufacturing method additionally comprises a step of impregnating an ion-conducting material into the catalyst layer-integrated electrode. [Reference numerals] (AA,EE) Gas; (BB,FF) Liquid; (CC) Large pores; (DD) Small pores; (GG,JJ) Electron; (HH, II) Ion
Abstract:
PURPOSE: A producing method of a cubic platinum-cobalt nano alloy catalyst is provided to secure the excellent activity by preventing the shape change by the clogging of nanoparticles. CONSTITUTION: A producing method of a cubic platinum-cobalt nano alloy catalyst comprises the following steps: dissolving a platinum precursor, a cobalt precursor, a surface stabilizer, and a reducing agent in a solvent; increasing the temperature of the obtained solution in the inert gas atmosphere; maintaining the temperature of the solution for obtaining a cubic platinum-cobalt nano alloy; and attaching the cubic platinum-cobalt nano alloy to a carbon supporter, and removing the surface stabilizer from the obtained catalyst.
Abstract:
PURPOSE: A producing method of a transition metal nanoparticle catalyst dipped in carbon is provided to simply produce nanoparticles with the small particle size, and to apply the catalyst to electrode materials of a fuel cell. CONSTITUTION: A producing method of a transition metal nanoparticle catalyst dipped in carbon comprises the following steps: dissolving a stabilizer in ethanol, for obtaining a mixed solution; inserting carriers into the mixed solution, and stirring for obtaining a dispersed solution; dissolving a transition metal precursor to the ethanol for obtaining a precursor solution; mixing the precursor solution with the dispersed solution for obtaining a dispersed precursor solution; reducing the dispersed precursor solution for obtaining nanoparticles; and drying the nanoparticles for obtaining powder.
Abstract:
PURPOSE: A method and an apparatus for manufacturing a catalyst slurry for a fuel cell are provided to increase catalyst availability and to improve the dispersibility of a dispersion of a catalyst particle and the mobility of a catalyst slurry. CONSTITUTION: A method for manufacturing a catalyst slurry for a fuel cell comprises the steps of: putting a solvent, an ionomer, and catalyst particles inside a reactor and dispersing the catalyst particles through an ultrasonic wave and a high speed mixing process; penetrating and adsorbing ionomers in micro pores existing in the catalyst particles by maintaining the inside pressure of a reactor in a vacuum state; removing generated microbubbles; and filtering catalyst particles larger than a standard particle size.
Abstract:
The present invention relates to a polymer electrolyte membrane chemically bonded with ionic liquid and a fuel cell using the same. More particularly, the present invention produces a polymer electrolyte membrane chemically bonded with an ionic liquid by a chemical reaction of the ionic liquid with a novel poly (styrene-block-2- histamine methyl acrylate) block copolymer, and thus has a high hydrogen ionic conductivity, even in a high-temperature and anhydrous environment; displays excellent electro-chemical and thermal stability; and ionic liquid capable of being applied to a high-temperature and dry-out bio fuel cell is chemically bonded to the present invention using the described-above.