Abstract:
Polyurethane/urea nanocomposites, precursors thereof, and methods of their manufacture and use are provided, the nanocomposites comprising: a) a polyurethane/urea polymer matrix, and b) surface modified silicon carbide nanoparticles dispersed within and covalently bound to a polyurethane/urea polymer comprising the polyurethane/urea polymer matrix. In some embodiments, the surface modified silicon carbide nanoparticle comprises a silicon carbide core and a linking group covalently bound to the surface of the silicon carbide core and covalently bound to the polyurethane/urea polymer. In some embodiments, the linking group is a moiety according to Formula where the urethane group of the linking group is covalently bound to the polyurethane/urea polymer; and where each open valence of the silicon atom of the linking group is bound to a hydroxyl group (-OH) or is covalently bound to the surface of the silicon carbide core through an oxygen atom.
Abstract:
An electronic device is described comprising an enclosure, wherein the enclosure comprises a cured epoxy resin composition comprising at least 50 volume % of electrically non-conductive thermally conductive inorganic particles, wherein the inorganic particles are selected from alumina, boron nitride, silicon carbide, alumina trihydrate and mixtures thereof. The enclosure may be a housing of a phone, laptop, or mouse. Alternatively, the enclosure maybe a case for an electronic device. Also described are epoxy resin compositions and a method of making an enclosure for an electronic device.
Abstract:
The present disclosure provides a resin blend containing a blend of a first phthalonitrile resin, a filler, and a bisphenol M diphthalonitrile ether resin. Suitable fillers include at least one of nanoparticles, microparticles, or fibers. The present disclosure also provides an article including a polymerization product of such a resin blend. The resin blends can be prepared at lower temperatures than phthalonitrile resin blends without a bisphenol M diphthalonitrile ether resin.
Abstract:
Polyurethane/urea nanocomposites, precursors thereof, and methods of their manufacture and use are provided, the nanocomposites comprising: a) a polyurethane/urea polymer matrix, and b) surface modified silicon carbide nanoparticles dispersed within and covalently bound to a polyurethane/urea polymer comprising the polyurethane/urea polymer matrix. In some embodiments, the surface modified silicon carbide nanoparticle comprises a silicon carbide core and a linking group covalently bound to the surface of the silicon carbide core and covalently bound to the polyurethane/urea polymer. In some embodiments, the linking group is a moiety according to Formula where the urethane group of the linking group is covalently bound to the polyurethane/urea polymer; and where each open valence of the silicon atom of the linking group is bound to a hydroxyl group (—OH) or is covalently bound to the surface of the silicon carbide core through an oxygen atom.