Abstract:
A composition is described comprising at least one fluoropolymer. The fluoropolymer comprises at least 90 % by weight based on the total weight of the fluoropolymer of polymerized units derived from perfluorinated monomers selected from tetrafluoroethene (TFE) and one or more unsaturated perfluorinated alkyl ethers and a fluorinated additive having a Mw of no greater than 50,000 g/mole comprising a partially fluorinated or perfluorinated alkyl or ether group. In some embodiments, the composition further comprises a fluorinated solvent. Also described are substrates comprising a coated surface of the fluoropolymer composition described herein.
Abstract:
A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group. In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
Abstract:
Articles are described comprising a substrate and a hardcoat layer disposed on the substrate. The hardcoat layer comprises the hydrolyzed and condensed reaction product of a composition comprising: i) first hydrophobic silane monomer(s) having the formula R1Si(OR)3 wherein R and R1 is methyl or ethyl; ii) optional second silane monomer(s) having the formula (R2)4-mSi(OR)m or Si(OR)4, wherein R, R1 and R2 are organic groups with the proviso that R1 is not methyl or ethyl and m ranges from 1 to 3. The hardcoat layer may further comprises 10 to 30 wt.% silica nanoparticles. A surface layer comprising a hydrophilic silane may be disposed on the hardcoat layer. Also described is a method of using an article having a rewritable surface, hardcoat coating compositions, and methods of making hardcoat compositions and articles.
Abstract:
Polyurethane/urea nanocomposites, precursors thereof, and methods of their manufacture and use are provided, the nanocomposites comprising: a) a polyurethane/urea polymer matrix, and b) surface modified silicon carbide nanoparticles dispersed within and covalently bound to a polyurethane/urea polymer comprising the polyurethane/urea polymer matrix. In some embodiments, the surface modified silicon carbide nanoparticle comprises a silicon carbide core and a linking group covalently bound to the surface of the silicon carbide core and covalently bound to the polyurethane/urea polymer. In some embodiments, the linking group is a moiety according to Formula where the urethane group of the linking group is covalently bound to the polyurethane/urea polymer; and where each open valence of the silicon atom of the linking group is bound to a hydroxyl group (-OH) or is covalently bound to the surface of the silicon carbide core through an oxygen atom.
Abstract:
Dry erase articles are described comprising a writable surface layer comprising a cured hardcoat composition comprising the reaction product of certain low surface energy compound(s). In one embodiment, the compound(s) comprise a C18-C36 hydrocarbon group and an ethylenically unsaturated group. In another embodiment, a mixture of compounds is utilized, the mixture comprising first compounds comprising a C18-C36 hydrocarbon group and an ethylenically unsaturated group and second compounds comprising a C8-C17 hydrocarbon group and an ethylenically unsaturated group, wherein the first and second compound are present at a weight ratio of 3:2 to 4:1.
Abstract:
Described herein is a low back-pressure, solid phase extraction media for removing dissolved metals in a liquid. The solid phase extraction media comprises particles entrapped in a porous polymeric fiber matrix. The particles comprise at least one of a thiol-containing moiety or a thiourea-containing moiety, and the porous polymeric fiber matrix comprises a plurality of fibers and a polymeric binder.
Abstract:
A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group. In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
Abstract:
Polyurethane/urea nanocomposites, precursors thereof, and methods of their manufacture and use are provided, the nanocomposites comprising: a) a polyurethane/urea polymer matrix, and b) surface modified silicon carbide nanoparticles dispersed within and covalently bound to a polyurethane/urea polymer comprising the polyurethane/urea polymer matrix. In some embodiments, the surface modified silicon carbide nanoparticle comprises a silicon carbide core and a linking group covalently bound to the surface of the silicon carbide core and covalently bound to the polyurethane/urea polymer. In some embodiments, the linking group is a moiety according to Formula where the urethane group of the linking group is covalently bound to the polyurethane/urea polymer; and where each open valence of the silicon atom of the linking group is bound to a hydroxyl group (—OH) or is covalently bound to the surface of the silicon carbide core through an oxygen atom.