Abstract:
An antistatic pressure sensitive adhesive composition, useful in electronic and optical display applications, comprising an antistatic agent and a first block copolymer comprising at least two hard A block polymeric units each independently having a Tg of at least 50°C, and at least one soft B block (meth)acrylic polymeric unit having a Tg no greater than 20°C. The composition can comprise a second block copolymer. Articles comprising an antistatic pressure sensitive adhesive composition adjacent a first surface of a substrate.
Abstract:
Nonwoven webs including one or more semi-continuous filaments made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. The at least one semi-continuous filament exhibits molecular orientation, and at least one of the crystalline polyolefin (co)polymer or the nonwoven web exhibits a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g. A process for making the semi-continuous filaments and nonwoven webs is also disclosed.
Abstract:
A pressure sensitive adhesive composition comprising a 2-octyl (meth)acrylate/(meth)acrylic acid copolymer and a crosslinking agent is described. The adhesive composition may be derived from renewable resources and provides good peel, shear and high temperature stability.
Abstract:
Nonwoven fibrous webs including a multiplicity of (co)polymeric fibers made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. A process for making the nonwoven fibrous webs includes heating the foregoing mixture to at least a Melting Temperature of the mixture to form a molten mixture, extruding this molten mixture through at least one orifice to form at least one filament, applying a gaseous stream to attenuate the at least one filament to form a plurality of discrete, discontinuous fibers, and cooling the plurality of discrete, discontinuous fibers to a temperature below the Melting Temperature and collecting the discrete discontinuous fibers as a nonwoven fibrous web. The nonwoven fibrous webs exhibit a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g.
Abstract:
Nonwoven webs including one or more semi-continuous filaments made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. The at least one semi-continuous filament exhibits molecular orientation, and at least one of the crystalline polyolefin (co)polymer or the nonwoven web exhibits a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g. A process for making the semi-continuous filaments and nonwoven webs is also disclosed.
Abstract:
An adhesive composition comprising an emulsion polymer which comprises a (meth)acrylate copolymer, and acicular silica particles, crosslinked by a polyfunctional aziridine crosslinking agent is described.
Abstract:
Nonwoven fibrous webs including a multiplicity of (co)polymeric fibers made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. A process for making the nonwoven fibrous webs includes heating the foregoing mixture to at least a Melting Temperature of the mixture to form a molten mixture, extruding this molten mixture through at least one orifice to form at least one filament, applying a gaseous stream to attenuate the at least one filament to form a plurality of discrete, discontinuous fibers, and cooling the plurality of discrete, discontinuous fibers to a temperature below the Melting Temperature and collecting the discrete discontinuous fibers as a nonwoven fibrous web. The nonwoven fibrous webs exhibit a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g.
Abstract:
A thermally stable meltblown fibrous web, including a plurality of meltblown multilayer fibers, in which at least some of the meltblown multilayer fibers each include at least one primary layer that includes a primary polymer that is slow-crystallizing with a T m of at least about 200°C, and at least one secondary layer that includes a secondary polymer that is fast-crystallizing with a T m of at least about 200°C.
Abstract:
An adhesive composition comprising an emulsion polymer which comprises a (meth)acrylate copolymer and silica nanoparticles is described. The addition of the nanoparticles results in a significant increase in the overlap shear properties.
Abstract:
A pressure sensitive adhesive composition comprising a 2-octyl (meth)acrylate/(meth)acrylic acid copolymer and a crosslinking agent is described. The adhesive composition may be derived from renewable resources and provides good peel, shear and high temperature stability.