Abstract:
Biodegradable layered composite comprising a first nonwoven biodegradable layer having a first and second major surface, the first nonwoven biodegradable layer comprising biodegradable polymeric melt-blown fibers, and a plurality of activated carbon particles enmeshed in the biodegradable polymeric melt-blown fibers. Biodegradable layered composite described herein can be used, for example, as a porous capture media for suspended nutrients in agricultural drainage.
Abstract:
Nonwoven fibrous webs including a multiplicity of (co)polymeric fibers made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. A process for making the nonwoven fibrous webs includes heating the foregoing mixture to at least a Melting Temperature of the mixture to form a molten mixture, extruding this molten mixture through at least one orifice to form at least one filament, applying a gaseous stream to attenuate the at least one filament to form a plurality of discrete, discontinuous fibers, and cooling the plurality of discrete, discontinuous fibers to a temperature below the Melting Temperature and collecting the discrete discontinuous fibers as a nonwoven fibrous web. The nonwoven fibrous webs exhibit a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g.
Abstract:
Nonwoven webs including one or more semi-continuous filaments made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. The at least one semi-continuous filament exhibits molecular orientation, and at least one of the crystalline polyolefin (co)polymer or the nonwoven web exhibits a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g. A process for making the semi-continuous filaments and nonwoven webs is also disclosed.
Abstract:
A nonwoven biofabric comprises a web comprising (a) biodegradable polymeric melt blown fibers, and (b) a plurality of particles enmeshed in the biodegradable polymeric meltblown fibers.
Abstract:
Sheet article comprising a first wall, second wall, and porous scrim between the first and second walls, and at least one seal portion sealing the first wall, second wall, and porous scrim together, as well as packaging articles and constructions comprising the same, and methods of making and using the foregoing sheet articles, packaging articles, and constructions.
Abstract:
Biodegradable layered composite comprising a first nonwoven biodegradable layer having a first and second major surface, the first nonwoven biodegradable layer comprising biodegradable polymeric melt-blown fibers, and a plurality of particles enmeshed in the biodegradable polymeric melt-blown fibers; and a biodegradable polymer film on at least a portion of the first major surface of the first nonwoven biodegradable layer. Biodegradable layered composite described herein can be used, for example, as biomulch for controlling weed growth and moisture.
Abstract:
Nonwoven fibrous webs including a multiplicity of (co)polymeric fibers made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. A process for making the nonwoven fibrous webs includes heating the foregoing mixture to at least a Melting Temperature of the mixture to form a molten mixture, extruding this molten mixture through at least one orifice to form at least one filament, applying a gaseous stream to attenuate the at least one filament to form a plurality of discrete, discontinuous fibers, and cooling the plurality of discrete, discontinuous fibers to a temperature below the Melting Temperature and collecting the discrete discontinuous fibers as a nonwoven fibrous web. The nonwoven fibrous webs exhibit a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g.
Abstract:
Nonwoven webs including one or more semi-continuous filaments made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. The at least one semi-continuous filament exhibits molecular orientation, and at least one of the crystalline polyolefin (co)polymer or the nonwoven web exhibits a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g. A process for making the semi-continuous filaments and nonwoven webs is also disclosed.
Abstract:
The present disclosure relates to electrode assemblies, membrane-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The electrode and membrane-electrode assemblies include (i) a porous electrode having a first major surface with a first surface area, Ae, an opposed second major surface and a plurality of voids; (ii) a discontinuous transport protection layer, comprising polymer, disposed on the first major surface and having a cross-sectional area, Ap, substantially parallel to the first major surface; and (iii) an interfacial region wherein the interfacial region includes a portion of the polymer embedded in at least a portion of the plurality of voids, a portion of the porous electrode embedded in a portion of the polymer or a combination thereof; and wherein 0.02Ae ≤ Ap ≤ 0.85Ae and the porous electrode and discontinuous transport protection layer form an integral structure. The disclosure further provides methods of making the electrode assemblies and membrane-electrode assemblies.
Abstract:
A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.