Abstract:
A solid support comprising ligands bound to the solid support; wherein at least a portion of the ligands comprises an amide group and a fluorinated amine group or a heterocyclic aliphatic group. The fluorinated amine group or a heterocyclic aliphatic group is typically an ionizable group. The amide group may be the reaction product of an acidic group or a salt thereof on the surface of the solid support and an amine compound, such as morpholine, piperazine, and derivatives thereof. As described is a kit comprising the solid support and a buffer having a pH of less than 5.5 and method of processing polynucleic acids.
Abstract:
A curable composition is provided comprising a urethane (meth)acrylate oligomer, a urethane (urea) phosphonate adhesion promoter, optionally reactive diluents, and an initiator. The use of the urethane (urea) phosphonate adhesion promotor provides better ageing stability and adhesion, as measured by T-peel adhesion test, than the use of other conventional adhesion promotors.
Abstract:
First articles with covalently attached thiocarbonylthio-containing groups are provided. More specifically, the first articles are a functionalized substrate that contains a solid polymeric substrate with a plurality of thiocarbonylthio-containing groups covalently attached directly to carbon atoms in a polymeric backbone of the solid polymeric substrate. Methods of making the first articles with covalently attached thiocarbonylthio-containing groups are provided. Additionally, second articles and methods of using the first articles to generate second articles with covalently attached polymeric chains are provided.
Abstract:
Described herein is a hydrogel-containing multilayer article and methods of making, said hydrogel-containing multilayer article comprising: (i) a polymeric substrate comprising an abstractable atom; and (ii) a cured aqueous coating composition thereon wherein the coating composition comprises: (a) a hydrophilic monomer comprising a (meth)acrylamide, (meth)acrylate, and combinations thereof: (b) at least 2 wt% of a water-swellable clay; (c) a water-soluble type I photoinitiator; and (d) an acid or salt wherein a water insoluble type II photoinitiator is localized at the interface between the hydrogel coating and the polymeric substrate.
Abstract:
Described herein is a filtration media comprising: (i) a first filtration medium comprising an anion exchange nonwoven substrate, wherein the anion exchange nonwoven substrate comprises a plurality of quaternary ammonium groups; and (ii) a second filtration medium comprising a functionalized microporous membrane wherein the functionalized microporous membrane comprises a plurality of guanidyl groups; wherein the first filtration medium is positioned upstream of the second filtration medium.
Abstract:
Described herein is a multilayer article comprising: a. a polymer substrate comprising an abstractable atom; and b. a hydrogel coating thereon wherein the hydrogel coating has a water content of at least 10 wt% and is covalently bonded to the polymer substrate, and wherein the hydrogel coating is derived from an aqueous composition having a pH less than 9.5, the aqueous composition comprising: (a) a hydrophilic monomer selected from at least one of (meth)acrylate or (meth)acrylamide; (b) at least 0.1 wt% of a water-swellable clay; (c) a first initiator, wherein the first initiator is water-soluble and is a Type I photoinitiator; and (d) a second initiator, wherein the initiator is water-soluble and is a Type II photoinitiator; and (e) an acid.
Abstract:
Ligand-functionalized substrates are describe that are useful in selectively binding and removing biological materials from biological samples, and methods for preparing the same.
Abstract:
A multiple-part curable composition, a cured composition formed by combining and reacting the multiple-part curable composition, and a method of providing a cured composition are described. The multiple-part curable composition contains at least a part A and a part B. Part A contains an oxalamido-containing compound while part B contains a derivatized polyethylene imine. The cured composition is an adhesive that is suitable for use as a tissue adhesive.
Abstract:
Monomers, polymers formed from such monomers, and articles for biomaterial capture including such polymers, wherein the monomer is represented by the following general Formula (I): CH2=CR1-C(=O)-X-R2-Z-X3-NR3-C(=X2)-X1-R4, wherein: R1 is H or -CH3; R2 is a (hetero)hydrocarbylene; X is -O- or -NH-; X1 is -O-, -S-, -NH-, or a single bond; X2 is -O- or -S-; X3 is -O- or -NR5-; R4 is hydrogen, (hetero)hydrocarbyl, or -N(R3)2; each R3 and R5 is independently hydrogen or a (hetero)hydrocarbyl; and Z is -C(=O)- or -NH-C(=O)-.