Abstract:
Methods of bonding polyester substrates together, comprising externally delivering thermal energy onto the bonding surfaces of the substrates and bringing the bonding surfaces into proximity with each other and bonding the substrates to each other.
Abstract:
A method of protecting a substrate using a protection sheet is disclosed. The protection sheet comprises a multilayer structure having a support layer and a thermoplastic backing layer, wherein the support layer contains a plurality of raised portions and a plurality of anchor portions bonded to a surface of the backing layer. The raised portions of the protection sheet are capable of releasably engaging with a mechanical mating member. In an embodiment, the backing layer of the protection sheet is surface treated to increase wetting tension to facilitate the adherence of paint particles to the surface of the protection sheet. The protection sheet may be used to protect horizontal substrates, vertical substrates, and objects, such as the walls of a paint booth, a work surface and a vehicle.
Abstract:
A coating composition is disclosed. The coating composition includes a poly(methyl methacrylate) polymer or copolymer having a weight average molecular weight of at least 50,000 grams per mole; monomer comprising at least one of an alkylene diacrylate, alkylene dimethacrylate, cycloalkylene diacrylate, or cycloalkylenedimethacrylate, wherein the at least one of an alkylene diacrylate, alkylene dimethacrylate, cycloalkylene diacrylate, or cycloalkylenedimethacrylate provides at least 80 percent by weight of the monomer; and a stabilizer against ultraviolet light. An article including a coating on a surface of a substrate and a method of making the article are also disclosed. The coating on the surface of the substrate is obtained by curing the disclosed coating composition.
Abstract:
A monolithic multilayer article includes a thermoformable cellular polyester core layer and an oriented polyester skin layer on at least one major side of the polyester core layer.
Abstract:
An adhesive tape comprising (A) a backing member comprising a principal film that: (a) comprises one or more orientable polymers; and (b) has a land portion wherein the principal film is capable of thermally-induced elastic recovery; and one or more modification zones, each modification zone comprising a rim portion protruding from the first major face and surrounding a central opening; and (B) an adhesive layer comprising normally tacky, pressure sensitive adhesive. Also a method for making such tape utilizing (A) a precursor film that is capable of thermally-induced elastic recovery; and differentially heating the film to form such modification zones.
Abstract:
The disclosure is directed to methods, systems, and apparatus for obtaining flame-perforated films which reduce or eliminate skewing of perforations in such films caused by thermal creep, whereby the film has perforations arranged to provide controlled tear characteristics, especially in both the lengthwise or machine direction (MD), and the crosswise or transverse direction (TD).
Abstract:
An oriented heat-treated principal film capable of thermally-induced self-forming, including one or more (co)polymers and exhibiting a relaxation temperature (T r ), the oriented heat-treated principal film having opposed first and second major faces, a land portion on the second major face and one or more modification zones on the second major face. A cross-linked (co)polymeric carrier layer is in contact with the first major face. Each modification zone includes a central closed portion and a rim portion surrounding the central closed portion and being surrounded by a land portion. An average thickness of each rim portion is greater than an average thickness of the land portion surrounding the central closed portion. An average thickness of each central closed portion is less than the average thickness of the land portion surrounding the central portion. Methods for making such films and adhesive articles comprising such films are also disclosed.
Abstract:
A heat-treated non-oriented principal film including a cast (co)polymeric component that is not capable of thermally-induced self-forming. The heat-treated principal film has first and second opposed major faces and at least one modification zone on the first major face, each modification zone including a central portion and a rim portion surrounding the central portion. Each rim portion is surrounded by a land portion. An average thickness of each rim portion is greater than an average thickness of the land portion surrounding each modification zone, and an average thickness of each central portion is less than the average thickness of the land portion, or zero. The first major face of the heat-treated principal film may be positioned in contact with an oriented carrier film including a molecularly-oriented (co)polymer that exhibits a relaxation temperature (T r ). Methods of making such films and hand-tearable adhesive articles including such films are also disclosed.
Abstract:
Burners and methods of making burner bodies via a focused beam are disclosed. In an aspect, a burner includes (a) a burner body and (b) at least one connector configured to supply at least a fuel and an oxidizer to the burner body. The burner body includes (1) a plurality of passageways; (2) a first major surface; (3) a plurality of ports at the first major surface, each port defined by an end of one of the passageways; and either: (4a) at least one heating element in or adjacent to at least one of the plurality of passageways that increases the temperature of a wall of the at least one of the plurality of passageways; or (4b) a cooling chamber directly adjacent to three or more of the plurality of passageways. The burner body includes a number of layers of metal directly bonded to each other. Further, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying a burner body; and generating, with the manufacturing device by an additive manufacturing process, the burner body based on the digital object. A system is also provided, including a display that displays a 3D model of a burner body; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of the burner body.
Abstract:
An aperture mask is provided comprising an elongated web of flexible film having at least one deposition mask pattern formed in the film, wherein the deposition mask pattern defines deposition apertures that extend through the film that define at least a portion of one or more electronic circuit elements, and wherein deposition apertures are bounded by a rim, the rim being a portion of the mask which has a thickness greater than an average thickness for the mask. In another aspect, the present invention provides a method of making such an aperture mask comprising the steps of: providing a support surface, wherein the support surface includes a plurality of lowered portions; providing a burner, wherein the burner supports a flame, and wherein the flame includes a flame tip opposite the burner; contacting at least a portion of an elongated web of flexible film against the support surface; and heating the film with a flame from a burner to create apertures in the film in the areas covering the plurality of lowered portions.