Abstract:
The present invention is concerned with the combined voltage or power flow control and damping of electromechanical oscillations in an electric power system (2) by Flexible AC Transmission System (FACTS) devices (20) or High Voltage DC (HVDC) transmission devices. To this end, information about a state or operating point of the power system is generated from suitable second system signals (y 2 ) and a control parameter (cp) of a FACTS controller (1) is derived therefrom. The control parameter and a first system signal (y 1 ) are used in the calculation of a control command (u) defining the settings of the FACTS device. Following a change in the state of the power system such as a change in the topology of a transmission network, poorly damped or even unstable oscillations are avoided by appropriate re-tuning of the control parameter of the damping or stabilizing equipment.
Abstract:
The present invention is concerned with a converter control unit or power system stabilizing unit for counteracting oscillations in electric power systems (1) that is equipped and employed to provide and processes information for system-wide monitoring, protection, control and metering. It comprises means (30) for synchronized (e.g. via GPS or another absolute/global time reference) sampling of voltages and/or currents, means for down-sampling in order to decrease the number of samples, and means (35) for calculating phasors, i.e. time stamped amplitude and phase angle of the voltages and/or currents.
Abstract:
The present invention is concerned with the combined voltage or power flow control and damping of electromagnetic oscillations in an electric power system (2) by Flexible AC Transmission System (FACTS) devices (20). To this end, information about a state or operating point of the power system is generated from suitable second system signals (y 2 ) and a control parameter (cp) of a FACTS controller (1) is derived therefrom. The control parameter and a first system signal (y 1 ) are used in the calculation of a control command (u) defining the settings of the FACTS device. Following a change in the state of the power system such as a change in the topology of a transmission network, poorly damped or even unstable oscillations are avoided by appropriate re-tuning of the control parameter of the damping or stabilizing equipment.
Abstract:
The present invention is concerned with the computation of power system sensitivities from power flow parameters and control parameters of a Power Flow Control Device (PFC). To this end, control parameter variations are applied to or generated by a PFC (20), and comprise variations in a control input u , a control effort e (injected series voltage, inserted series reactance), or a control effect q (power flow, active power transfer, phase-shift, current). A power flow response measuring unit (40) measures a variation of a power flow response such as current, active or apparent power, in a way sufficiently synchronized with the control parameter variation to allow establishing an unambiguous causal relationship or correspondence in the form of a power system sensitivity. The latter may be on-line adapted to continuously reflect an updated aspect of the power system behaviour, and thus enable an improved, fast and reliable power flow control in power systems comprising a meshed power network with two parallel flow paths or corridors connecting two areas or sub-systems.