Abstract:
Folienkondensatoren weisen eine dünne Trägerfolie (1) als Dielektrikum auf. Die Oberflächen der Trägerfolien sind mit als Elektroden dienenden Leiterschichten (2) aus Metall oder aus einem nichtmetallischen Leiter versehen. Wenn der Kondensator im Betrieb aufgeladen wird, können an den Kanten der Leiterschichten (2) elektrische Felder mit grossen Feldstärken entstehen, was zu Durchschlägen führen kann. Die Erfindung zeichnet sich im Wesentlichen dadurch aus, dass an den Rändern der Elektroden bildenden Leiterschicht (2) eine Randzonenbeschichtung (3) vorhanden ist, welche sich in den für Änderungen der angelegten Spannung massgeblichen Zeitspannen - beispielsweise der Wechselstrom-Periode - nur teilweise auflädt. Dazu muss die Randzonenbeschichtung der Folie eine Oberflächenleitfähigkeit haben, welche kleiner ist als die Oberflächenleitfähigkeit der Leiterschicht. Die lediglich teilweise Aufladung der Randzonenbeschichtung führt dazu, dass der Potentialverlauf kaum Unstetigkeiten aufweist und damit grosse Feldstärkenüberhöhungen vermieden werden können.
Abstract:
The present invention is concerned with a capacitive device, and in particular a metallized film capacitor made of a capacitive base structure with series connected internal base capacitors (21,41,42,22), the structure being repeated any number of times by suitably winding or stacking. The capacitor comprises auxiliary intermediate electrodes (32,34) which on either side do face only one electrode (11,53,13) which is part of an adjacent conductive layer (1,5). The internal base capacitors have a larger active capacitor area than the internal base capacitors of a comparable capacitor of conventional design, and the problems due to misalignment of the conductive layers and deviations in active base capacitor area are reduced. Further, the auxiliary intermediate electrodes do not see large in-plane charging currents, and therefore can preferentially have a high sheet resistance and good self-healing properties.
Abstract:
The present invention relates to the shielding of coils of transformers, in particular to a coil for a transformer, a transformer with a coil, and a method of manufacturing a coil for a transformer. A coil (100) for a transformer with a coil body (102) is provided. The coil body (102) comprises a conductor (201). A first insulation material (203) is attached to the conductor (201). A conductive electric shielding device arrangement (200) is provided for reducing the maximum strength of an electric field generated in the coil (100) or for smoothing the field generated by each coil body (102) of a plurality of coil bodies (102).
Abstract:
A film (1) comprises a base (2) consisting of an electrically insulating polymer which carries on one or both surfaces a sequence of electrically conductively coated areas (3) which are separated by non-coated interstices (4). The film or a superposition of films arranged one above the other can be shaped, i.e., folded or preferably wound to form a capacitor with a plurality of essentially parallel electrodes which are insulated from each other and consist each of one or more electrode layers formed by the coated areas (3) and separated by dielectric layers formed by sections of the base (2). An electrode layer may comprise two adjacent coated areas pertaining to subsequent turns. The capacitor has high voltage withstand capacity and can be used, e.g., as a high voltage capacitor in a capacitive voltage transformer in series with a conventional low voltage transformer wound from two superposed conductively coated films.
Abstract:
A film (1) comprises a base (2) consisting of an electrically insulating polymer which carries on one or both surfaces a sequence of electrically conductively coated areas (3) which are separated by non-coated interstices (4). The film or a superposition of films arranged one above the other can be shaped, i.e., folded or preferably wound to form an electrode configuration with a plurality of essentially parallel electrodes which are insulated from each other and consist each of one or more electrode layers formed by the coated areas (3) and separated by insulating layers formed by sections of the base (2). An electrode layer may comprise two adjacent coated areas pertaining to subsequent turns. The electrode configuration can be used to subdivide a potential difference, e.g., in a bushing, into a series of smaller potential differences between subsequent electrodes, with the smaller potential differences preferably smaller than the minimum of the Paschen curve.
Abstract:
A low voltage switch consisting of two contact elements has a contact material forming the contact surface and comprising nanotubes. The latter are arranged perpendicular to the substrate and are made of carbon, i.e. multiwalled carbon nanotubes are used preferentially. Upon closing of the switch, the nanotube layers of the two contact elements penetrate each other like two brushes, thereby forming many contact lines as opposed to the conventional contact points.
Abstract:
An Electrode structure (1) for a cold field emission device with a conductor (10) and a plurality of nanotubes (11) arranged on the conductor (10), the nanotubes containing metal oxide such as vanadiumoxide, tinoxide and titaniumdioxide, is disclosed.
Abstract:
An electrically conducting nanocomposite material with a matrix comprising an intrinsically conducting polymer (ICP) and a plurality of conducting metaloxide (MO) nanotubes forming a threedimensional interconnected network embedded in the matrix is proposed. The nanotubes are furthermore coated with a metallic layer, and the interconnected network may be anisotropic via an at least partial alignment of the nanotubes.
Abstract:
The present invention is concerned with a metallized film capacitor with internal series connections of individual base capacitors which is able to handle discontinuous contacting due to metal spraying. Charging currents entering the contact electrodes at discrete contact spots are redistributed by reinforcements which do form part of the internal base capacitors.
Abstract:
Bei einer kapazitiven Deionisationseinrichtung werden die einzelnen Kondensatorzellen (2,2') elektrisch in Serie geschaltet. Dies bewirkt eine geringere Anfälligkeit der Einrichtung gegenüber Kurzschlüssen in einer Zelle und ein vereinfachtes Energiemanagement, da ein Vielfaches der Zellspannung ΔU an der Einrichtung anliegt. Vorteilhafte Ausführungen betreffen den Einsatz von Bipolar-Elektroden (23), bei welchen eine anodenseitige und eine kathodenseitige Elektrode zweier benachbarter Zellen zusammenfallen. Um Leckströme zwischen Elektroden (20",21") im Elektrolyten (3) zu reduzieren, wird der elektrische Widerstand der entsprechenden Leckstrompfade (5) erhöht durch eine Verringerung des Zuleitungsquerschnitts oder eine Verlängerung des Leckstrompfads. Alternativ dazu werden in einem neuen Verfahren die Zellen während dem Reinigungsprozess galvanisch getrennt.