Abstract:
An electrical module comprising a first electrically conductive substrate plate (101), a second electrically conductive substrate plate (102), and semiconductor components (103-110) between the first and second substrate plates is presented. The second substrate plate is shaped to have cuts (115, 116, 122, 123, 124) on its edge or apertures for providing access to control terminals of the semiconductor components in order to facilitate connection of wire bonds to the control terminals. Hence, the wire bonds to the control terminals can be made after the semiconductor components have been bonded to the first and second substrate plates. Furthermore, due to the appropriate shaping of the second substrate plate, the area of the second substrate plate does not need to be essentially smaller than that of the first substrate plate. Thus cooling via the second substrate plate is sufficiently balanced with cooling via the first substrate plate and, as a consequence, temperature stresses can be reduced.
Abstract:
A method for fabricating an electrical module comprising a first substrate plate (101), a second substrate plate (102), and semiconductor components (103-110) between the first and second substrate plates is presented. Also an electrical module obtainable with the method and an electrical converter device including such electrical modules are presented. In the method, a bond (112) between first sides of the semiconductor components and the first substrate plate is made by sintering and, subsequently, a bond (111) between second sides of the semiconductor components and the second substrate plate is made by soldering. As the sintered bond can withstand high temperatures, a high temperature solder can be used for the soldered bond without damaging the earlier made sintered bond.
Abstract:
A power-electronic arrangement comprising semiconductor components (102, 103, 107), a heat exchanger (110), and an electrically conductive element (109) is presented. The heat exchanger comprises evaporator channels (111) and condenser channels (112) for working fluid. The electrically conductive element comprises a contact surface providing a thermal contact to outer surfaces of walls of the evaporator channels for transferring heat from the electrically conductive element to the evaporator channels. A main current terminal of each semiconductor component is bonded to the electrically conductive element which thus forms a part of a main current circuitry of a power system. As the main current terminal is directly bonded to the electrically conductive element cooled with the heat exchanger, the temperature gradients inside the semiconductor components can be kept moderate, and thus the temperatures inside the semiconductor components can be limited.
Abstract:
Es wird eine Schaltzelle zur Schaltung von n Schaltspannungsniveaus, wobei n=5,7,9,... ist, angegeben, welche eine erste und eine zweite Zweigschaltung (1,2) aufweist, wobei jede Zweigschaltung (1,2)n-1 in Serie geschaltete Leistungshalbleiterschalter und p=n-2 Leistungshalbleiterschalterverbindungspunkten der in Serie geschalteten Leistungshalbleiterschalter einer jeden Zweigschaltung (1,2) aufweist, die eine erste und eine zweite Kapazität (6,7) oder alternativ nur eine Kapazität (8) aufweist. Zudem enthält die Zwischenschaltung eine Vielzahl von Leistungshalbleiterschaltern, die zusammen mit der ersten und zweiten Kapazität (6,7) oder der einen Kapazität (8) zwischen dem Verbindungspunkt zweie Energiespeicher (3,4) und den beiden Zweigschaltungen (1,2) angeordnet ist.