Abstract:
The present disclosure relates to isolated antibodies that do not bind to brain natriuretic peptide that can be used as a reagent to reduce heterophilic interference in an immunoassay.
Abstract:
The present invention relates to the measurement of glycated hemoglobin by fluorescence quenching. The present invention uniquely involves performing two sequential fluorescent quenching measurements: one measurement of the fluorescent quenching due to total hemoglobin in the sample and a second measurement of the fluorescent quenching due to glycated hemoglobin present in the sample after the non-glycated hemoglobin is removed. Glycated hemoglobin and non-glycated hemoglobin can be separated by a variety of methods as described herein, including ion capture and solid phase separations.
Abstract:
2102417 9318407 PCTABS00025 The present invention relates to the measurement of glycated hemoglobin by fluorescence quenching. The present invention uniquely involves performing two sequential fluorescent quenching measurements: one measurement of the fluorescent quenching due to total hemoglobin in the sample and a second measurement of the fluorescent quenching due to glycated hemoglobin present in the sample after the non-glycated hemoglobin is removed. Glycated hemoglobin and non-glycated hemoglobin can be separated by a variety of methods as described herein, including ion capture and solid phase separations.
Abstract:
A novel material and device useful in solid-phase binding assays to determine the presence or amount of an analyte in a test sample, particularly antigens, antibodies, or other ligands or DNA segments. The material and device comprises a reaction site having procedural controls and an analyte binding area capable of being simultaneously contacted by the sample and reagent used in the performance of the assay. The procedural controls and analyte binding areas operate to provide readable results as to the presence or absence of analyte and simultaneously verify the assay procedure and therefore the assay result.
Abstract:
The present invention regards a composition for use as an ion capture separation reactant in solution form comprising boric acid covalently coupled to a polyanionic acid.
Abstract:
A novel material and device useful in solid-phase binding assays to determine the presence or amount of an analyte in a test sample, particularly antigens, antibodies, or other ligands or DNA segments. The material and device comprises a reaction site having procedural controls and an analyte binding area capable of being simultaneously contacted by the sample and reagent used in the performance of the assay. The procedural controls and analyte binding areas operate to provide readable results as to the presence or absence of analyte and simultaneously verify the assay procedure and therefore the assay result.
Abstract:
The present invention relates to the measurement of glycated hemoglobin by fluorescence quenching. The present invention uniquely involves performing two sequential fluorescent quenching measurements: one measurement of the fluorescent quenching due to total hemoglobin in the sample and a second measurement of the fluorescent quenching due to glycated hemoglobin present in the sample after the non-glycated hemoglobin is remove d. Glycated hemoglobin and non-glycated hemoglobin can be separated by a variety of methods as described herein, including ion capture and solid phase separations.
Abstract:
The present invention regards a composition for use as an ion capture separation reactant in solution form comprising boric acid covalently coupled to a polyanionic acid.
Abstract:
The present invention regards a composition for use as an ion capture separation reactant in solution form comprising boric acid covalently coupled to a polyanionic acid.
Abstract:
The present invention relates to the measurement of glycated hemoglobin by fluorescence quenching. The present invention uniquely involves performing two sequential fluorescent quenching measurements: one measurement of the fluorescent quenching due to total hemoglobin in the sample and a second measurement of the fluorescent quenching due to glycated hemog-lobin present in the sample after the non-glycated hemoglobin is removed. Glycated hemoglobin and non-glycated hemoglobin can be separated by a variety of methods as described herein, including ion capture and solid phase separations.