Abstract:
Methods, software, and apparatus for providing a netlist for simulation that includes one or more parameters that are determined by one or more pattern dependent effects. One particular embodiment of the present invention receives a layout of a circuit including one or more MOSFET transistors. For one or more of the MOSFET transistors, spacing between transistors is measured using the received layout and a pattern dependent parameter is determined. This parameter modifies the length of the gate that is used in simulation. In other embodiments, other pattern dependent effects can be used to determine the values of one or more parameters. These parameters may be used to modify gate length, emitter size, resistor width, or other device characteristics.
Abstract:
A configuration memory cell ("CRAM") for a field programmable gate array ("FPGA") integrated circuit ("IC") device is given increased resistance to single event upset ("SEU"). A portion of the gate structure of the input node of the CRAM is increased in size relative to the nominal size of the remainder of the gate structure. Part of the enlarged gate structure is located capacitively adjacent to an N-well region of the IC, and another part is located capacitively adjacent to a P-well region of the IC. This arrangement gives the input node increased capacitance to resist SEU, regardless of the logical level of the input node. The invention is also applicable to any node of any type of memory cell for which increased resistance to SEU is desired.
Abstract:
A configuration memory cell ("CRAM") for a field programmable gate array ("FPGA") integrated circuit ("IC") device is given increased resistance to single event upset ("SEU"). A portion of the gate structure of the input node of the CRAM is increased in size relative to the nominal size of the remainder of the gate structure. Part of the enlarged gate structure is located capacitively adjacent to an N-well region of the IC, and another part is located capacitively adjacent to a P-well region of the IC. This arrangement gives the input node increased capacitance to resist SEU, regardless of the logical level of the input node. The invention is also applicable to any node of any type of memory cell for which increased resistance to SEU is desired.
Abstract:
PROBLEM TO BE SOLVED: To optimize the power consumption of a programmable logic device (PLD) and to obtain optimum levels of the power consumption and PLD operation speed. SOLUTION: The PLD (103) includes first and second circuits. The first and second circuits are portions of user design implemented by using resources of the PLD. The first circuit is powered with a first supply voltage. The second circuit is powered with a second supply voltage. At least one of the first and second supply voltages is determined by a computer-aided design (CAD) flow of the PLD used to implement the user design in the PLD. Further, the first and second supply voltages are supplied by an external regulator (303) of the PLD. COPYRIGHT: (C)2007,JPO&INPIT