Abstract:
Methods for driving a tunable laser with integrated tuning elements are disclosed. The methods can include modulating the tuning current and laser injection current such that the laser emission wavelength and output power are independently controllable. In some examples, the tuning current and laser injection current are modulated simultaneously and a wider tuning range can result. In some examples, one or both of these currents is sinusoidally modulated. In some examples, a constant output power can be achieved while tuning the emission wavelength. In some examples, the output power and tuning can follow a linear relationship. In some examples, injection current and tuning element drive waveforms necessary to achieve targeted output power and tuning waveforms can be achieved through optimization based on goodness of fit values between the targeted and actual output power and tuning waveforms.
Abstract:
Methods and systems concerning demultiplexing and multiplexing light in optical multiplexing systems are disclosed herein. An optical multiplexing system may include a number of light emitters and a number of associated waveguides. Light emitted from each of the number of light emitters may travel through the associated waveguide and may enter a multiplexer, where a multiplexing operation may occur. At least one of the number of light emitters may be configured to emit light with multiple wavelengths. Such a light emitter may further be associated with a demultiplexer to demultiplex the light with multiple wavelengths before the light reaches a multiplexer. After a demultiplexing operation, the demultiplexed light may be directed to multiple waveguides and the multiple waveguides may guide the demultiplexed light to a multiplexer.
Abstract:
Configurations for a tunable Echelle grating are disclosed. The tunable Echelle grating may include an output waveguide centered in a waveguide array, with input waveguides on both sides of the output waveguide. A metal tuning pad may be located over the slab waveguide and may be heated to induce a temperature change in the slab waveguide. By increasing the temperature of the propagation region of the slab waveguide, the index of refraction may shift, thus causing the peak wavelength of the channel to shift. This may result in an optical component capable of multiplexing multiple light sources in an energy efficient manner while maintaining a small form factor.
Abstract:
Configurations for an optical system used for guiding light and reducing back-reflection back in an output waveguide is disclosed. The optical system may include an output waveguide defined in a slab waveguide. The output waveguide may terminate before an output side of the slab waveguide, which may reduce the back-reflection of light from the output side back into the output waveguide. The output side may define an optical element that may steer the output light. The optical element may collimate the output light, cause the output light to converge, or cause the output light to diverge.
Abstract:
Configurations for an edge-generated vertical emission laser that vertically emits light and fabrication methods of the edge-generated vertical emission laser are disclosed. The edge-generated vertical emission laser may include a distributed feedback (DFB) laser structure, a grating coupler, and contact layers. Light may propagate through the DFB laser structure, approximately parallel to the top surface of the edge-generated vertical emission laser and be directed by the grating coupler toward the top surface of the edge-generated vertical emission laser. The light may vertically emit from the edge-generated vertical emission laser approximately perpendicular to the top surface of the edge-generated vertical emission laser. Additionally, the contact layers may be n-metal and p-metal, which may be located on the same side of the edge-generated vertical emission laser. These features of the edge-generated vertical emission laser may facilitate ease of testing and increased options for packaging.
Abstract:
Configurations for an optical system with phase shifting elements are disclosed. The optical system may include a first waveguide that provides light to a second waveguide, which may be a slab waveguide. A phase shifting element may be disposed on the slab waveguide and may be heated to induce a temperature change in the slab waveguide. By increasing the temperature of the propagation region of the slab waveguide, the index of refraction of the propagation region of the slab waveguide may shift, thus causing the index of refraction of light propagating through the propagation region to shift, thus shifting the phase of the light. This may result in an optical component capable of phase shifting light for reducing coherent noise while being energy efficient and maintaining a small form factor.
Abstract:
Disclosed is a Vernier effect DBR laser that has uniform laser injection current pumping along the length of the laser. The laser can include one or more tuning elements, separate from the laser injection element, and these tuning elements can be used to control the temperature or modal refractive index of one or more sections of the laser. The refractive indices of each diffraction grating can be directly controlled by temperature changes, electro optic effects, or other means through the one or more tuning elements. With direct control of the temperature and/or refractive indices of the diffraction gratings, the uniformly pumped Vernier effect DBR laser can be capable of a wider tuning range. Additionally, uniform pumping of the laser through a single electrode can reduce or eliminate interfacial reflections caused by, for example, gaps between metal contacts atop the laser ridge, which can minimize multi-mode operation and mode hopping.