Abstract:
A method and a system. The system may include (a) evaluation units, (b) an object distribution system for receiving the objects and distributing the objects between the evaluation units, and (c) at least one controller. Each evaluation unit may include (i) a chamber housing that has an inner space, (ii) a chuck, (iii) a movement system that is configured to move the chuck, and (iv) a charged particle module that is configured to irradiate the object with a charged particle beam, and to detect particles emitted from the object. In each evaluation unit a length of the inner space is smaller than twice a length of the object, and a width of the inner space is smaller than twice a width of the object.
Abstract:
According to an embodiment, a support module is provided for supporting a substrate. The support module may include a chuck and a vertical stage. The chuck may include multiple chuck segments that are independently movable. When the substrate is positioned on the chuck, different chuck segments are positioned under different areas of the substrate. The vertical stage may include multiple piezoelectric motors. Each piezoelectric motor may be configured to perform nanometric scale elevation and lowering movements. The multiple piezoelectric motors may be configured to independently move the multiple chuck segments.
Abstract:
Chamber elements defining a chamber include a first element having a first surface, a second element, a first dynamic seal and load mechanism. The second element includes an outer floating element that includes a second surface about the periphery of the chamber, and an inner floating element. The second surface and the first surface are maintained proximate to each other when the chamber is in a load position and when the chamber is closed. The load mechanism may move the inner floating element from the outer floating element until a gap between the inner floating element and the second element to facilitate loading of the device to the chamber. A movement system may generate relative movement between the first element and the second element.
Abstract:
There may be provided an evaluation system that may include spatial sensors that include atomic force microscopes (AFMs) and a solid immersion lens. The AFMs are arranged to generate spatial relationship information that is indicative of a spatial relationship between the solid immersion lens and a substrate. The controller is arranged to receive the spatial relationship information and to send correction signals to the at least one location correction element for introducing a desired spatial relationship between the solid immersion lens and the substrate.
Abstract:
An evaluation system that includes a miniature module that comprises a miniature objective lens and a miniature supporting module; wherein the miniature supporting module is arranged, when placed on a sample, to position the miniature objective lens at working distance from the sample; wherein the miniature objective lens is arranged to gather radiation from an area of the sample when positioned at the working distance from the sample; a sensor arranged to detect radiation that is gathered by the miniature objective lens to provide detection signals indicative of the area of the sample.
Abstract:
A charged particle beam source that may include an emitter that has a tip for emitting charged particles; a socket; electrodes; a filament that is connected to the electrodes and to the emitter; electrodes for providing electrical signals to the filament; a support element that is connected to the emitter; and a support structure that comprises one or more interfaces for contacting only a part of the support element while supporting the support element.
Abstract:
According to an embodiment, a support module is provided for supporting a substrate. The support module may include a chuck and a vertical stage. The chuck may include multiple chuck segments that are independently movable. When the substrate is positioned on the chuck, different chuck segments are positioned under different areas of the substrate. The vertical stage may include multiple piezoelectric motors. Each piezoelectric motor may be configured to perform nanometric scale elevation and lowering movements. The multiple piezoelectric motors may be configured to independently move the multiple chuck segments.
Abstract:
A charged particle beam source that may include an emitter that has a tip for emitting charged particles; a socket; electrodes; a filament that is connected to the electrodes and to the emitter; electrodes for providing electrical signals to the filament; a support element that is connected to the emitter; and a support structure that comprises one or more interfaces for contacting only a part of the support element while supporting the support element.
Abstract:
A method and a system. The system may include (a) evaluation units, (b) an object distribution system for receiving the objects and distributing the objects between the evaluation units, and (c) at least one controller. Each evaluation unit may include (i) a chamber housing that has an inner space, (ii) a chuck, (iii) a movement system that is configured to move the chuck, and (iv) a charged particle module that is configured to irradiate the object with a charged particle beam, and to detect particles emitted from the object. In each evaluation unit a length of the inner space is smaller than twice a length of the object, and a width of the inner space is smaller than twice a width of the object.
Abstract:
A method and a system for moving a substrate, the system includes a chamber, a chuck, a movement system that is positioned outside the chamber, a controller, an intermediate element, at least one sealing element that is configured to form a dynamic seal between the intermediate element and the chamber housing. The movement system is configured to repeat, for each region of the substrate out of a plurality of regions of the substrate, the steps of: rotating the chuck to position a given portion of the region of the substrate within a field of view that is related to an opening of the chamber housing; and moving the chuck relation to the opening to position additional portions of the region of the substrate within the field of view that is related to the opening.