Abstract:
A method of determining an edge roughness parameter has the steps: (1010) controlling a radiation system to provide a spot of radiation at a measurement position for receiving a substrate; (1020) receiving a measurement signal from a sensor for measuring intensity of a forbidden diffraction order (such as a second order) being diffracted by a metrology target at the measurement position when the metrology target is illuminated by the spot of radiation, the metrology target comprising a repetitive pattern being configured by configuration of a linewidth / pitch ratio (of about 0.5) to control an amount of destructive interference that leads to forbidding of the diffraction order, the sensor being configured to provide the measurement signal based on the measured intensity; and (1040) determining an edge roughness parameter based on the measured intensity of the forbidden diffraction order.
Abstract:
A method of assessing a model of a substrate is presented. A scatterometry measurement is taken using radiation at a first wavelength. The wavelength of the radiation is then changed and a further scatterometry measurement taken. If the scatterometry measurements are consistent across a range of wavelengths then the model is sufficiently accurate. However, if the scatterometry measurements change as the wavelength changes then the model of the substrate is not sufficiently accurate.
Abstract:
End of line effect can occur during manufacture of components using a lithographic apparatus. These end of line effects can result in line end shortening of the features being manufactured. Such line end shortening may have an adverse impact on the component being manufactured. It is therefore desirable to predict and/or monitor the line end shortening. A test pattern is provided that has two separate areas such that, as designed, when the two areas are illuminated with radiation (for example from an angle-resolved scatterometer) they result in diffused radiation with asymmetry that is equal in sign to each other, but opposite in magnitude. When the test pattern is actually manufactured, line end shortening occurs, and so the asymmetry of the two areas are not equal and opposite. From the measured asymmetry of the manufactured test pattern, the amount of line end shortening that has occurred can be estimated.
Abstract:
End of line effect can occur during manufacture of components using a lithographic apparatus. These end of line effects can result in line end shortening of the features being manufactured. Such line end shortening may have an adverse impact on the component being manufactured. It is therefore desirable to predict and/or monitor the line end shortening. A test pattern is provided that has two separate areas such that, as designed, when the two areas are illuminated with radiation (for example from an angle-resolved scatterometer) they result in diffused radiation with asymmetry that is equal in sign to each other, but opposite in magnitude. When the test pattern is actually manufactured, line end shortening occurs, and so the asymmetry of the two areas are not equal and opposite. From the measured asymmetry of the manufactured test pattern, the amount of line end shortening that has occurred can be estimated.
Abstract:
Disclosed is a detection apparatus for simultaneous acquisition of multiple images of an object at a plurality of different focus levels; comprising: a modulator for obtaining multiple beam copies of an incoming beam; and a detector operable to capture said multiple beam copies, such that at least two of said multiple beam copies are captured at different focus levels. Also disclosed is an inspection apparatus comprising such a detection system.
Abstract:
A method including: determining recipe consistencies between one substrate measurement recipe of a plurality of substrate measurement recipes and each other substrate measurement recipe of the plurality of substrate measurement recipes; calculating a function of the recipe consistencies; eliminating the one substrate measurement recipe from the plurality of substrate measurement recipes if the function meets a criterion; and reiterating the determining, calculating and eliminating until a termination condition is met. Also disclosed herein is a substrate measurement apparatus, including a storage configured to store a plurality of substrate measurement recipes, and a processor configured to select one or more substrate measurement recipes from the plurality of substrate measurement recipes based on recipe consistencies among the plurality of substrate measurement recipes.
Abstract:
A metrology apparatus for determining a characteristic of interest relating to at least one structure on a substrate, the characteristic of interest is an overlay value between a first layer and a second layer on the substrate and the at least one structure comprising features in the first layer and features in the second layer, the metrology apparatus comprising a sensor for detecting characteristics of radiation impinging on the sensor; an optical system being configured to illuminate the at least one structure with radiation received from a source and the optical system being configured to receive radiation scattered by the at least one structure and to transmit the received radiation to the sensor, the optical system being configured to image the at least one structure on the sensor, the optical system being configured to prevent a transmission of radiation of the 0 th diffraction order of the scattered radiation towards the sensor, and the sensor being arranged in an image plane of the optical system or the sensor being arranged in a plane conjugate with the image plane; a determining system being configured to receive a signal from the sensor representing an image being recorded on the sensor and being configured to determine the overlay value on basis of a displacement of the features in the first layer of the substrate with respect to the features in the second layer of the substrate.
Abstract:
Described is a metrology apparatus for determining a characteristic of interest relating to at least one structure on a substrate, and associated method. The metrology apparatus comprises a processor being configured to computationally determine phase and amplitude information from a detected characteristic of scattered radiation having been reflected or scattered by the at least one structure as a result of illumination of said at least one structure with illumination radiation in a measurement acquisition, and use the determined phase and amplitude to determine the characteristic of interest.
Abstract:
A method of determining an edge roughness parameter has the steps: (1010) controlling a radiation system to provide a spot of radiation at a measurement position for receiving a substrate; (1020) receiving a measurement signal from a sensor for measuring intensity of a forbidden diffraction order (such as a second order) being diffracted by a metrology target at the measurement position when the metrology target is illuminated by the spot of radiation, the metrology target comprising a repetitive pattern being configured by configuration of a linewidth / pitch ratio (of about 0.5) to control an amount of destructive interference that leads to forbidding of the diffraction order, the sensor being configured to provide the measurement signal based on the measured intensity; and (1040) determining an edge roughness parameter based on the measured intensity of the forbidden diffraction order.
Abstract:
A method of determining at least one homogeneity metric describing homogeneity of an etched trench on a substrate formed by a lithographic manufacturing process. The method comprises obtaining one or more images of the etched trench, wherein each of said one or more images comprises a spatial representation of one or more parameters of scattered radiation as detected by a detector or camera (365) following scattering and/or diffraction from the etched trench; and measuring homogeneity along the length of the etched trench on said one or more images to determine said at least one homogeneity metric.