Abstract:
There is provided a charged particle apparatus comprising: a particle beam generator, optics, a first and a second positioning device, both configured for positioning the substrate relative to the particle beam generator along its optical axis, and a controller configured for switching between a first operational mode and a second operational mode. The apparatus is configured, when operating in the first operational mode, for irradiating the substrate by the particle beam at a first landing energy of the particle beam and, when operating in the second operational mode, for irradiating the substrate at a second, different landing energy. When operating in the first operational mode, the second positioning device is configured to position the substrate relative to the particle beam generator at a first focus position of the particle beam and in the second operational mode, to position the substrate at a second, different focus position.
Abstract:
Systems and methods for venting gas into a chamber 304 at an accelerated speed are disclosed. The system comprises a first gas flow and a second gas flow. The first gas flow is formed by a first vent valve 312 and optionally a third vent valve 316. The second gas flow is formed by a second vent valve 314. The vent valve vacuum system is configured to connect a gas source reservoir 301 and a chamber 304 for gas to be vented into, and coupled to a controller 302. The vent valve vacuum system turns on the second vent valve to form a second gas flow at a point of time later than the first gas flow is formed.
Abstract:
A load lock system for charged particle beam imaging with a particle shielding plate (204), a bottom seal plate (202) and a plurality of sensor units (301-303) is provided. The sensor units are located above the wafer, the shield plate is designed to have a few number of screws, and the bottom seal plate contains no cable, no contact sensors and fewer screws used. In the invention, the system is designed to improve the contamination particles from components in the load lock system of charged particle beam inspection tool and also to simplify its assembly.
Abstract:
System and method for dynamically determining a position of stage (200) holding a sample and automatically compensating position errors comprising a plurality of interferometer units (31, 32) configured to generate signals based on a position of a stage and further comprising a computing device which can be configured to determine the position of the sample based on the signals, and in response to the determined position, provide instructions associated with the determined position by a control module for controlling of a motor of a stage, or for controlling of a motor to adjust interferometer units emitting charged particle beams, or combination thereof, to compensate position errors of a sample automatically.